Menu Close

1-x-x-2-2a-1-x-x-1-0-solve-for-x-




Question Number 53491 by ajfour last updated on 22/Jan/19
(((1+x)/( (√x))))^2 +2a(((1+x)/( (√x))))+1=0  solve for x.
(1+xx)2+2a(1+xx)+1=0solveforx.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
k^2 +2ak+a^2 +1=a^2   (k+a)^2 =a^2 −1  k=−a±(√(a^2 −1))   ((1+x)/( (√x)))=−a±(√(a^2 −1))   1+x=((√x)/b)    [(1/b)=−a±(√(a^2 −1)) ]  x=b^2 x^2 +2b^2 x+b^2   x^2 (b^2 )+x(2b^2 −1)+b^2 =0  x=((−(2b^2 −1)±(√((2b^2 −1)^2 −4b^2 ×b^2 )) )/(2b^2 ))  x=((−(2b^2 −1)±(√(4b^4 −4b^2 +1−4b^4 )))/(2b^2 ))  x=((−(2b^2 −1)±(√(1−4b^2 )))/(2b^2 ))  pls subdtitude the value of b...
k2+2ak+a2+1=a2(k+a)2=a21k=a±a211+xx=a±a211+x=xb[1b=a±a21]x=b2x2+2b2x+b2x2(b2)+x(2b21)+b2=0x=(2b21)±(2b21)24b2×b22b2x=(2b21)±4b44b2+14b42b2x=(2b21)±14b22b2plssubdtitudethevalueofb
Answered by malwaan last updated on 22/Jan/19
((1+x)/( (√x)))=((−2a±(√(4a^2 −4)))/2)  =−a±(√(a^2 −1))  ∴((1+2x+x^2 )/x)=a^2 ±2a(√(a^2 −1))+a^2 −1  ((1+x^2 )/x)+2=2a^2 ±2a(√(a^2 −1))−1  1+x^2 =(2a^2 ±2a(√(a^2 −1))−3)x  x^2 −(2a^2 ±2a(√(a^2 −1))−3)x+1=0  x=((2a^2 ±2a(√(a^2 −1))−3±(√((2a^2 ±2a(√(a^2 −1))−3)^2 −4)))/2)  Am I right ?
1+xx=2a±4a242=a±a211+2x+x2x=a2±2aa21+a211+x2x+2=2a2±2aa2111+x2=(2a2±2aa213)xx2(2a2±2aa213)x+1=0x=2a2±2aa213±(2a2±2aa213)242AmIright?
Answered by mr W last updated on 22/Jan/19
let u=((1+x)/( (√x)))=(1/( (√x)))+(√x)≥2  u^2 +2au+1=0  (u+a)^2 =a^2 −1  u=−a±(√(a^2 −1))≥2  (√(a^2 −1))≥a+2  ⇒a≤−(5/4)  x−u(√x)+1=0  (√x)=((u±(√(u^2 −4)))/2)  x=((u^2 −2±u(√(u^2 −4)))/2)  ⇒x=((2a^2 −3±2a(√(a^2 −1))±(−a+(√(a^2 −1)))(√(2a^2 −5±2a(√(a^2 −1)))))/2)
letu=1+xx=1x+x2u2+2au+1=0(u+a)2=a21u=a±a212a21a+2a54xux+1=0x=u±u242x=u22±uu242x=2a23±2aa21±(a+a21)2a25±2aa212

Leave a Reply

Your email address will not be published. Required fields are marked *