Menu Close

1-x-x-2-x-99-0-need-an-explanation-




Question Number 55992 by Mikael_Marshall last updated on 07/Mar/19
1 + x + x^2  + . . . + x^(99) =0  need an explanation.
$$\mathrm{1}\:+\:{x}\:+\:{x}^{\mathrm{2}} \:+\:.\:.\:.\:+\:{x}^{\mathrm{99}} =\mathrm{0} \\ $$$${need}\:{an}\:{explanation}. \\ $$
Commented by mr W last updated on 07/Mar/19
if x=−1:  1 + x + x^2  +x^3 + . . .+x^(98)  + x^(99)   =(1 + x) + (x^2  +x^3 )+ . . .+(x^(98)  + x^(99) )  =(1−1)+(1−1)+...+(1−1)  =0    or  if x=−1:  1 + x + x^2  + . . . + x^(99) =((1−x^(100) )/(1−x))=((1−1)/2)=0
$${if}\:{x}=−\mathrm{1}: \\ $$$$\mathrm{1}\:+\:{x}\:+\:{x}^{\mathrm{2}} \:+{x}^{\mathrm{3}} +\:.\:.\:.+{x}^{\mathrm{98}} \:+\:{x}^{\mathrm{99}} \\ $$$$=\left(\mathrm{1}\:+\:{x}\right)\:+\:\left({x}^{\mathrm{2}} \:+{x}^{\mathrm{3}} \right)+\:.\:.\:.+\left({x}^{\mathrm{98}} \:+\:{x}^{\mathrm{99}} \right) \\ $$$$=\left(\mathrm{1}−\mathrm{1}\right)+\left(\mathrm{1}−\mathrm{1}\right)+…+\left(\mathrm{1}−\mathrm{1}\right) \\ $$$$=\mathrm{0} \\ $$$$ \\ $$$${or} \\ $$$${if}\:{x}=−\mathrm{1}: \\ $$$$\mathrm{1}\:+\:{x}\:+\:{x}^{\mathrm{2}} \:+\:.\:.\:.\:+\:{x}^{\mathrm{99}} =\frac{\mathrm{1}−{x}^{\mathrm{100}} }{\mathrm{1}−{x}}=\frac{\mathrm{1}−\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$
Commented by maxmathsup by imad last updated on 07/Mar/19
if x from C   (e) ⇔ ((1−x^(100) )/(1−x)) =0  with x≠1 ⇒x^(100) =1 =e^(i2kπ)  ⇒  x_k =e^((ikπ)/(50))       and k∈[[1,99]]  are roots of  this equation.
$${if}\:{x}\:{from}\:{C}\:\:\:\left({e}\right)\:\Leftrightarrow\:\frac{\mathrm{1}−{x}^{\mathrm{100}} }{\mathrm{1}−{x}}\:=\mathrm{0}\:\:{with}\:{x}\neq\mathrm{1}\:\Rightarrow{x}^{\mathrm{100}} =\mathrm{1}\:={e}^{{i}\mathrm{2}{k}\pi} \:\Rightarrow \\ $$$${x}_{{k}} ={e}^{\frac{{ik}\pi}{\mathrm{50}}} \:\:\:\:\:\:{and}\:{k}\in\left[\left[\mathrm{1},\mathrm{99}\right]\right]\:\:{are}\:{roots}\:{of}\:\:{this}\:{equation}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *