Menu Close

1-x-x-x-1-x-13-6-




Question Number 117026 by bemath last updated on 08/Oct/20
 ((√(1−x))/( (√x))) + ((√x)/( (√(1−x)))) = ((13)/6)
1xx+x1x=136
Answered by 1549442205PVT last updated on 09/Oct/20
We need the condition for the equation  is defined as 0<x<1(∗)   ((√(1−x))/( (√x))) + ((√x)/( (√(1−x)))) = ((13)/6) (1)  (1)⇔((1−x+x)/( (√(x(1−x)))))=((13)/6)  ⇔6=13(√(x(1−x)))⇔36=169(x−x^2 )  ⇔169x^2 −169x+36=0  Δ=169^2 −4.169.36=169.25=65^2   ⇒x=((169±65)/(2.169))=((13±5)/(2.13))∈{(4/(13)),(9/(13))}  both satisfy (∗)  Thus,the given equation has two roots  x∈{(4/(13)),(9/(13))}
Weneedtheconditionfortheequationisdefinedas0<x<1()1xx+x1x=136(1)(1)1x+xx(1x)=1366=13x(1x)36=169(xx2)169x2169x+36=0Δ=16924.169.36=169.25=652x=169±652.169=13±52.13{413,913}bothsatisfy()Thus,thegivenequationhastworootsx{413,913}
Commented by bemath last updated on 09/Oct/20
gave kudos
gavekudos
Answered by TANMAY PANACEA last updated on 09/Oct/20
a+(1/a)=((13)/6)→6a^2 −13a+6=0  6a^2 −9a−4a+6=0  3a(2a−3)−2(2a−3)=0  (2a−3)(3a−2)=0  a=(3/2),(2/3)  a^2 =((1−x)/x)=(9/4)    and  ((1−x)/x)=(4/9)  9x+4x=4→x=(4/(13)) and 13x=9    x=(9/(13))
a+1a=1366a213a+6=06a29a4a+6=03a(2a3)2(2a3)=0(2a3)(3a2)=0a=32,23a2=1xx=94and1xx=499x+4x=4x=413and13x=9x=913

Leave a Reply

Your email address will not be published. Required fields are marked *