Menu Close

1-x-y-2-x-1-y-3-find-x-2-y-2-




Question Number 91843 by jagoll last updated on 03/May/20
 { (((1/x)+y = 2)),((x+(1/y) = 3)) :}  find x^2 +y^2
{1x+y=2x+1y=3findx2+y2
Commented by jagoll last updated on 03/May/20
Commented by jagoll last updated on 03/May/20
��������
Commented by john santu last updated on 03/May/20
��������
Commented by Prithwish Sen 1 last updated on 03/May/20
dividing eqn (i) by (ii)  (y/x) = (2/3) ⇒ (x/3)=(y/2) = k say  then x=3k, y=2k  putting these in any one of the given equation  6k^2 −6k+1=0⇒k = ((3±(√3))/6) ⇒k^2 = ((2±(√3))/6)  ∴x^2 +y^2 = (9+4).((2±(√3))/6) = 13(((2±(√3)))/6)
dividingeqn(i)by(ii)yx=23x3=y2=ksaythenx=3k,y=2kputtingtheseinanyoneofthegivenequation6k26k+1=0k=3±36k2=2±36x2+y2=(9+4).2±36=13(2±3)6
Commented by jagoll last updated on 03/May/20
��✒️
Answered by mr W last updated on 03/May/20
let x+y=u, xy=v  (i)×(ii):  1+xy+(1/(xy))+1=6  xy+(1/(xy))=4  v+(1/v)=4  v^2 −4v+1=0  ⇒v=2±(√3)    (i)+(ii):  x+(1/x)+y+(1/y)=5  (x+y)(1+(1/(xy)))=5  u(1+(1/v))=5  ⇒u=(5/(1+(1/v)))=((5v)/(v+1))    x^2 +y^2 =(x+y)^2 −2xy=u^2 −2v  =((25v^2 )/((v+1)^2 ))−2v=((13(2±(√3)))/6)
letx+y=u,xy=v(i)×(ii):1+xy+1xy+1=6xy+1xy=4v+1v=4v24v+1=0v=2±3(i)+(ii):x+1x+y+1y=5(x+y)(1+1xy)=5u(1+1v)=5u=51+1v=5vv+1x2+y2=(x+y)22xy=u22v=25v2(v+1)22v=13(2±3)6
Commented by jagoll last updated on 03/May/20
����
Answered by MJS last updated on 03/May/20
without thinking, without tricks:   { ((1+xy=2x)),((1+xy=3y)) :} ⇒ y=(2/3)x  ⇒ 2x^2 −6x+3=0 ⇒ x=((3±(√3))/2) ⇒ y=((3±(√3))/3)
withoutthinking,withouttricks:{1+xy=2x1+xy=3yy=23x2x26x+3=0x=3±32y=3±33
Commented by jagoll last updated on 03/May/20
��������������
Commented by Ar Brandon last updated on 03/May/20
�� Brilliant !

Leave a Reply

Your email address will not be published. Required fields are marked *