Menu Close

10-5-10-5-10-5-5-units-a-5-10-5-10-5-10-25-units-b-Find-b-a-




Question Number 183059 by Shrinava last updated on 19/Dec/22
10^5  ∙ 10^5  ∙ ... ∙ 10^5 _( 5 units)  = a  5^(10)  + 5^(10)  + .... + 5^(10) _( 25 units)  = b  Find:   (b/a) = ?
$$\underset{\:\mathrm{5}\:\boldsymbol{\mathrm{units}}} {\underbrace{\mathrm{10}^{\mathrm{5}} \:\centerdot\:\mathrm{10}^{\mathrm{5}} \:\centerdot\:…\:\centerdot\:\mathrm{10}^{\mathrm{5}} }}\:=\:\boldsymbol{\mathrm{a}} \\ $$$$\underset{\:\mathrm{25}\:\boldsymbol{\mathrm{units}}} {\underbrace{\mathrm{5}^{\mathrm{10}} \:+\:\mathrm{5}^{\mathrm{10}} \:+\:….\:+\:\mathrm{5}^{\mathrm{10}} }}\:=\:\boldsymbol{\mathrm{b}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\boldsymbol{\mathrm{b}}}{\boldsymbol{\mathrm{a}}}\:=\:? \\ $$
Commented by Jeduardo7 last updated on 19/Dec/22
((25∙5^(10) )/((10^5 )^5 )) = (5^(12) /(5^(25) ∙2^(25) )) = (1/(5^(13) .2^(25) ))
$$\frac{\mathrm{25}\centerdot\mathrm{5}^{\mathrm{10}} }{\left(\mathrm{10}^{\mathrm{5}} \right)^{\mathrm{5}} }\:=\:\frac{\mathrm{5}^{\mathrm{12}} }{\mathrm{5}^{\mathrm{25}} \centerdot\mathrm{2}^{\mathrm{25}} }\:=\:\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{13}} .\mathrm{2}^{\mathrm{25}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *