Question Number 64601 by LPM last updated on 19/Jul/19
$$\:\:\:\:\:\mathrm{10}^{{x}} ={x}^{\mathrm{1000}} \:\Rightarrow\:{x}\:=? \\ $$
Answered by mr W last updated on 19/Jul/19
$${x}^{\mathrm{1000}} =\mathrm{10}^{{x}} \\ $$$$\Rightarrow{x}=\pm\mathrm{10}^{\frac{{x}}{\mathrm{1000}}} \\ $$$$\Rightarrow{x}=\pm{e}^{\frac{{x}}{\mathrm{1000}}×\mathrm{ln}\:\mathrm{10}} \\ $$$$\Rightarrow{x}×{e}^{−\frac{{x}}{\mathrm{1000}}×\mathrm{ln}\:\mathrm{10}} =\pm\mathrm{1} \\ $$$$\Rightarrow\left(−\frac{{x}}{\mathrm{1000}}×\mathrm{ln}\:\mathrm{10}\right)×{e}^{−\frac{{x}}{\mathrm{1000}}×\mathrm{ln}\:\mathrm{10}} =\mp\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{1000}} \\ $$$$\Rightarrow−\frac{{x}}{\mathrm{1000}}×\mathrm{ln}\:\mathrm{10}=\mathbb{W}\left(\mp\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{1000}}\right)\:\:\leftarrow\:{Lambert}\:{W}\:{function} \\ $$$$\Rightarrow{x}=−\frac{\mathrm{1000}}{\mathrm{ln}\:\mathrm{10}}×\mathbb{W}\left(\mp\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{1000}}\right) \\ $$$$\Rightarrow{x}=\begin{cases}{−\frac{\mathrm{1000}}{\mathrm{ln}\:\mathrm{10}}×\mathbb{W}\left(−\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{1000}}\right)=\begin{cases}{−\frac{\mathrm{1000}×\left(−\mathrm{0}.\mathrm{0023079}\right)}{\mathrm{ln}\:\mathrm{10}}=\mathrm{1}.\mathrm{00231}}\\{−\frac{\mathrm{1000}×\left(−\mathrm{8}.\mathrm{1747762}\right)}{\mathrm{ln}\:\mathrm{10}}=\mathrm{3550}.\mathrm{2602}}\end{cases}}\\{−\frac{\mathrm{1000}}{\mathrm{ln}\:\mathrm{10}}×\mathbb{W}\left(\frac{\mathrm{ln}\:\mathrm{10}}{\mathrm{1000}}\right)=−\frac{\mathrm{1000}×\mathrm{0}.\mathrm{0022973}}{\mathrm{ln}\:\mathrm{10}}=−\mathrm{0}.\mathrm{99771}}\end{cases} \\ $$$${there}\:{are}\:{totally}\:\mathrm{3}\:{solutions}: \\ $$$${x}=−\mathrm{0}.\mathrm{99771},\:\mathrm{1}.\mathrm{00231},\:\mathrm{3550}.\mathrm{2602} \\ $$
Commented by Tony Lin last updated on 19/Jul/19
$$\mathrm{3550}? \\ $$
Commented by Tony Lin last updated on 19/Jul/19
$${how}\:{do}\:{you}\:{calculate}\:{Lambert}\:{W}\:{function}? \\ $$$${what}\:{calculator}\:{can}\:{calculate}\:{this}\:{function}? \\ $$
Commented by mr W last updated on 19/Jul/19
$${x}^{\mathrm{1000}} =\mathrm{10}^{{x}} \\ $$$$\Rightarrow\mathrm{1000}×\mathrm{log}\:{x}={x} \\ $$$${with}\:{x}=\mathrm{3550}.\mathrm{2602} \\ $$$$\mathrm{1000}×\mathrm{log}\:\mathrm{3550}.\mathrm{2602}=\mathrm{3550}.\mathrm{2602} \\ $$$${i}.{e}.\:{x}=\mathrm{3550}.\mathrm{2602}\:{is}\:{a}\:{correct}\:{solution}. \\ $$
Commented by mr W last updated on 19/Jul/19
$${Lambert}\:{function}\:{W}\left({a}\right)\:{is}\:{the}\:{root} \\ $$$${of}\:{equation}\:{xe}^{{x}} ={a},\:{if}\:{you}\:{don}'{t} \\ $$$${have}\:{a}\:{calculator},\:{you}\:{can}\:{use}\:{graphic} \\ $$$${methods}\:{to}\:{get}\:{its}\:{value}. \\ $$$${i}\:{can}\:{recomment}\:{you}\:{a}\:{very}\:{nice}\:{app} \\ $$$${called}\:{GRAPHER}. \\ $$