Question Number 84993 by mr W last updated on 18/Mar/20
$$\mathrm{100}\:{apples}\:{should}\:{be}\:{packed}\:{in}\:{three} \\ $$$${boxes}\:{and}\:{each}\:{box}\:{should}\:{contain} \\ $$$${at}\:{least}\:\mathrm{10}\:{apples}.\:{in}\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}? \\ $$
Commented by john santu last updated on 18/Mar/20
$$\mathrm{let}\:\mathrm{the}\:\mathrm{box}\:\mathrm{we}\:\mathrm{call}\:\mathrm{it}\:\mathrm{ABC} \\ $$$$\left[\left(\mathrm{10},\mathrm{10},\mathrm{80}\right)\:\left(\mathrm{10},\mathrm{11},\mathrm{79}\right)\:,\:\left(\mathrm{10},\mathrm{12},\mathrm{78}\right),\right. \\ $$$$\left….\:\left(\mathrm{10},\:\mathrm{80},\mathrm{10}\right)\:\right]\:×\:\mathrm{2} \\ $$
Commented by john santu last updated on 18/Mar/20
$$\Rightarrow\:\mathrm{71}\:×\mathrm{2}\:=\:\mathrm{142}\:\mathrm{ways} \\ $$
Commented by mr W last updated on 18/Mar/20
$${you}\:{treat}\:{the}\:{boxes}\:{as}\:{different}?\: \\ $$$${what}'{s}\:{the}\:{meaning}\:{of}\:×\mathrm{2}\:? \\ $$
Commented by john santu last updated on 18/Mar/20
$$\mathrm{yes}.\:\mathrm{i}\:\mathrm{assume}\:\mathrm{the}\:\mathrm{boxes}\:\mathrm{are}\:\mathrm{different}. \\ $$$$×\mathrm{2}\:\mathrm{is}\:\mathrm{mean}\:\mathrm{has}\:\mathrm{2}\:\mathrm{case} \\ $$$$\mathrm{case}\:\mathrm{2}\: \\ $$$$\left(\mathrm{11},\mathrm{10},\mathrm{79}\right)\left(\mathrm{12},\mathrm{10},\mathrm{78}\right)…\left(\mathrm{80},\mathrm{10},\mathrm{10}\right) \\ $$
Commented by mr W last updated on 18/Mar/20
$${as}\:{example}\:\left(\mathrm{11},\mathrm{11},\mathrm{78}\right)\:{is}\:{not}\:{included} \\ $$$${in}\:{your}\:{consideration}. \\ $$
Commented by mr W last updated on 19/Mar/20
$${it}'{s}\:{wrong}\:{sir}. \\ $$$${you}\:{didn}'{t}\:{take}\:{into}\:{account}\:{that}\:{each} \\ $$$${box}\:{should}\:{have}\:{at}\:{least}\:\mathrm{10}\:{apples}. \\ $$$${the}\:{formula}\:{you}\:{applied}\:{is}\:{for}\:{the}\:{case} \\ $$$${that}\:{a}\:{box}\:{may}\:{get}\:{zero}\:{apple}.\:{besides} \\ $$$${in}\:{our}\:{question}\:{there}\:{are}\:{three}\:{boxes}, \\ $$$${not}\:\mathrm{4}\:{as}\:{you}\:{took}. \\ $$
Commented by Rio Michael last updated on 18/Mar/20
$$\mathrm{okay}\:\mathrm{i}\:\mathrm{just}\:\mathrm{read}\:\mathrm{on}\:\mathrm{this}.\:\mathrm{thanks}\:\mathrm{mr}\:\mathrm{Wfor}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{what}\:\mathrm{i}\:\mathrm{got}\:\mathrm{is}\:'\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{dividing}\:{n}\:\mathrm{identical} \\ $$$$\mathrm{objects}\:\mathrm{into}\:{r}\:\mathrm{groups}\:\mathrm{is}\:\:\:^{{n}\:+\:{r}−\mathrm{1}} {C}_{{r}−\mathrm{1}} \:\mathrm{ways}. \\ $$$$\mathrm{lets}\:\mathrm{apply}\:\mathrm{it}\:\mathrm{to}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{i}\:\mathrm{get}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:=\:^{\mathrm{100}\:+\:\mathrm{4}\:−\:\mathrm{1}} \mathrm{C}_{\mathrm{4}−\mathrm{1}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{each}\:\mathrm{gets}\:\mathrm{at}\:\mathrm{least}\:\mathrm{10} \\ $$$$\:\:\:=\:^{\mathrm{103}} \mathrm{C}_{\mathrm{3}} \:=\:\mathrm{357760}\:\mathrm{ways} \\ $$
Answered by Rio Michael last updated on 18/Mar/20
$$\mathrm{this}\:\mathrm{is}\:\mathrm{my}\:\mathrm{approach}\:\mathrm{sir} \\ $$$$\ast\:\mathrm{the}\:\mathrm{first}\:\mathrm{bag}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:\mathrm{ways}. \\ $$$$\ast\:\mathrm{the}\:\mathrm{next}\:\mathrm{bag}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{90}} \mathrm{C}_{\mathrm{10}\:} \:\mathrm{ways}. \\ $$$$\ast\:\mathrm{the}\:\mathrm{third}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{80}} \mathrm{C}_{\mathrm{10}} \:\mathrm{ways} \\ $$$$\Rightarrow\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{for}\:\mathrm{90}\:\mathrm{apples}=\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:×\:^{\mathrm{90}} {C}_{\mathrm{10}} \:×\:^{\mathrm{80}} {C}_{\mathrm{10}} \:×\:\mathrm{2}\:\:\:\mathrm{as}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{apples}\:\mathrm{drop}\:\mathrm{down}\:\mathrm{to}\:\mathrm{90}. \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{can}\:\mathrm{share}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{in}\:^{\mathrm{10}} \mathrm{C}_{\mathrm{3}} \:\mathrm{ways} \\ $$$$\Rightarrow\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}= \\ $$$$\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:×\:^{\mathrm{90}} {C}_{\mathrm{10}} \:×\:^{\mathrm{80}} {C}_{\mathrm{10}} \:×\:\mathrm{2}\:×\:^{\mathrm{10}} {C}_{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 18/Mar/20
$${the}\:{apples}\:{are}\:{identical}. \\ $$
Commented by Rio Michael last updated on 18/Mar/20
$$\mathrm{ofcourse}\:\mathrm{sir}\:\mathrm{we}\:\mathrm{just}\:\mathrm{select}\:\mathrm{at}\:\mathrm{random} \\ $$
Commented by mr W last updated on 18/Mar/20
$${but}\:{your}\:{working}\:{says}\:{something} \\ $$$${different}: \\ $$$$\ast\:\mathrm{the}\:\mathrm{first}\:\mathrm{bag}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:\mathrm{ways}. \\ $$$$\Rightarrow{this}\:{means}\:{the}\:{apples}\:{are}\:{distinct}. \\ $$$${since}\:{if}\:{the}\:{apples}\:{are}\:{identical}\:{and} \\ $$$${the}\:{first}\:{bag}\:{takes}\:\mathrm{10}\:{apples},\:{then} \\ $$$${there}\:{is}\:{only}\:{one}\:{possibility},\:{namely} \\ $$$${it}\:{obtains}\:\mathrm{10}\:{apples}.\:{you}\:{can}\:{not}\:{give} \\ $$$${ihm}\:\mathrm{10}\:{apples}\:{in}\:{different}\:{ways}. \\ $$
Commented by Rio Michael last updated on 18/Mar/20
$$\:\: \\ $$$$\mathrm{you}'\mathrm{re}\:\mathrm{right}\:\mathrm{sir}\: \\ $$
Answered by Joel578 last updated on 18/Mar/20
$$\mathrm{This}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{same}\:\mathrm{with}\:\mathrm{how}\:\mathrm{many}\:\mathrm{integer} \\ $$$$\mathrm{solutions}\:\mathrm{of}\: \\ $$$${x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \:+\:{x}_{\mathrm{3}} \:=\:\mathrm{100},\:\:\:\mathrm{10}\leqslant{x}_{{i}} \leqslant\mathrm{80},\:\:{i}\:=\:\mathrm{1},\mathrm{2},\mathrm{3} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{above}\:\mathrm{is}\:\mathrm{same}\:\mathrm{with}\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{integer}\:\mathrm{solutions}\:\mathrm{of} \\ $$$${y}_{\mathrm{1}} \:+\:{y}_{\mathrm{2}} \:+\:{y}_{\mathrm{3}} \:=\:\mathrm{70},\:\:\:\mathrm{0}\leqslant{y}_{{i}} \leqslant\mathrm{70} \\ $$$$\mathrm{It}\:\mathrm{has}\:\begin{pmatrix}{\mathrm{70}\:+\:\mathrm{3}\:−\:\mathrm{1}}\\{\:\:\:\:\:\:\:\mathrm{3}\:−\:\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\mathrm{72}}\\{\:\:\mathrm{2}}\end{pmatrix}\:=\:\frac{\mathrm{72}\left(\mathrm{71}\right)}{\mathrm{2}}\:=\:\mathrm{2556}\:\mathrm{ways} \\ $$
Commented by jagoll last updated on 18/Mar/20
$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\begin{pmatrix}{\mathrm{70}+\mathrm{3}−\mathrm{1}}\\{\:\:\:\:\:\:\:\mathrm{3}−\mathrm{1}}\end{pmatrix}\:? \\ $$
Commented by mr W last updated on 18/Mar/20
$${that}'{s}\:{correct}\:{sir}! \\ $$$${what}\:{if}\:{the}\:{boxes}\:{are}\:{identical}?\:{that} \\ $$$${means}\:{we}\:{only}\:{divide}\:{the}\:{apples}\:{into} \\ $$$${three}\:{parts},\:{each}\:{part}\:{with}\:{at}\:{least} \\ $$$$\mathrm{10}\:{apples}. \\ $$
Commented by jagoll last updated on 18/Mar/20
$$\mathrm{if}\:\mathrm{50}\:\mathrm{candies}\:\mathrm{are}\:\mathrm{divided}\:\mathrm{to}\:\mathrm{4}\:\mathrm{children} \\ $$$$\mathrm{with}\:\mathrm{each}\:\mathrm{child}\:\mathrm{getting}\:\mathrm{a}\:\mathrm{minimum} \\ $$$$\mathrm{of}\:\mathrm{10}\:\mathrm{candies} \\ $$
Commented by jagoll last updated on 18/Mar/20
$$\begin{pmatrix}{\mathrm{50}+\mathrm{4}−\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{4}−\mathrm{1}}\end{pmatrix}\:=\:\left(\underset{\mathrm{3}} {\overset{\mathrm{53}} {\:}}\right)\:=\:\frac{\mathrm{53}.\mathrm{52}.\mathrm{51}}{\mathrm{3}.\mathrm{2}.\mathrm{1}}\:? \\ $$
Commented by mr W last updated on 18/Mar/20
$${no}.\:{each}\:{kid}\:{gets}\:\mathrm{9}\:{at}\:{first}.\:{there}\:{are} \\ $$$$\mathrm{14}\:{remaining}.\:{to}\:{share}\:{these}\:\mathrm{14}\:{pieces} \\ $$$${there}\:{are}\:\left(_{\mathrm{4}−\mathrm{1}} ^{\mathrm{14}−\mathrm{1}} \right)=\left(_{\mathrm{3}} ^{\mathrm{13}} \right)\:{ways}. \\ $$$${see}\:{stars}\:{and}\:{bars}\:{method}. \\ $$
Commented by jagoll last updated on 18/Mar/20
$$\mathrm{why}\:\mathrm{not}\:\left(\underset{\mathrm{4}−\mathrm{1}} {\overset{\mathrm{10}−\mathrm{1}} {\:}}\right)\:\mathrm{sir}?\:\mathrm{each}\:\mathrm{kid}\:\mathrm{get}\:\mathrm{minimum} \\ $$$$\mathrm{10}\:\mathrm{candies}.\:\mathrm{there}\:\mathrm{are}\:\mathrm{10}\:\mathrm{remaining}\: \\ $$$$\mathrm{to}\:\mathrm{share}\:\mathrm{these}\:\mathrm{10}\:\mathrm{pieces} \\ $$
Commented by Joel578 last updated on 18/Mar/20
$$\mathrm{To}\:\mathrm{sir}\:\mathrm{mr}\:\mathrm{W}\: \\ $$$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{elaborate}\:\mathrm{your}\:\mathrm{question}\:\mathrm{again}. \\ $$$$\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{see}\:\mathrm{any}\:\mathrm{differences}\:\mathrm{with}\:\mathrm{the}\:\mathrm{earlier}\:\mathrm{question}. \\ $$$$\mathrm{Maybe}\:\mathrm{some}\:\mathrm{example}\:\mathrm{will}\:\mathrm{help} \\ $$
Commented by Joel578 last updated on 18/Mar/20
$$\mathrm{To}\:\mathrm{sir}\:\mathrm{Jagoll} \\ $$$$\mathrm{Here}\:\mathrm{I}\:\mathrm{send}\:\mathrm{a}\:\mathrm{clear}\:\mathrm{explanation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula} \\ $$$$\mathrm{I}\:\mathrm{used}.\:\mathrm{Hope}\:\mathrm{this}\:\mathrm{will}\:\mathrm{help}. \\ $$
Commented by mr W last updated on 18/Mar/20
$${if}\:{they}\:{share}\:{the}\:\mathrm{10}\:{remaining},\:{it} \\ $$$${means}\:{one}\:{or}\:{two}\:{kid}\:{may}\:{get}\:{zero} \\ $$$${candy},\:{because}\:{each}\:{of}\:{the}\:{has}\:{already} \\ $$$$\mathrm{10}\:{candies}\:{before}.\:{to}\:{share}\:\mathrm{10}\:{candies} \\ $$$${among}\:\mathrm{4}\:{kids},\:{zero}\:{is}\:{allowed},\:{there} \\ $$$${are}\:\left(_{\mathrm{4}−\mathrm{1}} ^{\mathrm{10}+\mathrm{4}−\mathrm{1}} \right)=\left(_{\mathrm{3}} ^{\mathrm{13}} \right)\:{ways}. \\ $$$$ \\ $$$${formula}:\:{to}\:{share}\:{n}\:{objects}\:{among} \\ $$$${r}\:{persons},\:{each}\:{with}\:\geqslant\mathrm{1}\:{object},\:{there} \\ $$$${are}\:\left(_{{r}−\mathrm{1}} ^{{n}−\mathrm{1}} \right)\:{ways}. \\ $$$${to}\:{share}\:{n}\:{objects}\:{among} \\ $$$${r}\:{persons},\:{each}\:{with}\:\geqslant\mathrm{0}\:{object},\:{there} \\ $$$${are}\:\left(_{{r}−\mathrm{1}} ^{{n}+{r}−\mathrm{1}} \right)\:{ways}. \\ $$
Commented by john santu last updated on 18/Mar/20
$$\mathrm{does}\:\mathrm{means}\:\mathrm{that}\:\mathrm{all}\:\mathrm{three}\:\mathrm{boxes}\: \\ $$$$\mathrm{considered}\:\mathrm{identical}\: \\ $$
Commented by Joel578 last updated on 18/Mar/20
Commented by Joel578 last updated on 18/Mar/20
Commented by mr W last updated on 18/Mar/20
$${to}\:{joel}\:{sir}: \\ $$$${when}\:\mathrm{100}\:{apples}\:{are}\:{divided}\:{into}\:\mathrm{3} \\ $$$${parts},\:{it}\:{can}\:{be}\:{for}\:{example} \\ $$$$\mathrm{20},\:\mathrm{30},\:\mathrm{50} \\ $$$${this}\:{is}\:{only}\:{one}\:{possibility}.\:{but}\:{when} \\ $$$${these}\:{apples}\:{are}\:{put}\:{into}\:\mathrm{3}\:{distinct}\:{boxes}, \\ $$$${there}\:{are}\:\mathrm{6}\:{different}\:{ways},\:{e}.{g}. \\ $$$${A}=\mathrm{20},\:{B}=\mathrm{30},\:{C}=\mathrm{50} \\ $$$${A}=\mathrm{20},\:{B}=\mathrm{50},\:{C}=\mathrm{30} \\ $$$${A}=\mathrm{30},\:{B}=\mathrm{20},\:{C}=\mathrm{50} \\ $$$${A}=\mathrm{30},\:{B}=\mathrm{50},\:{C}=\mathrm{20} \\ $$$${A}=\mathrm{50},\:{B}=\mathrm{20},\:{C}=\mathrm{30} \\ $$$${A}=\mathrm{50},\:{B}=\mathrm{30},\:{C}=\mathrm{20} \\ $$$${this}\:{is}\:{what}\:{we}\:{had}\:{till}\:{now}. \\ $$$${what}\:{i}\:{ask}\:{now}\:{is}\:{how}\:{many}\:{ways} \\ $$$${are}\:{there}\:{to}\:{divide}\:\mathrm{100}\:{apples}\:{into}\:\mathrm{3} \\ $$$${parts} \\ $$
Commented by jagoll last updated on 19/Mar/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by jagoll last updated on 19/Mar/20
$$\mathrm{thank}\:\mathrm{you} \\ $$