Menu Close

100x-lg-x-x-3-x-




Question Number 149042 by mathdanisur last updated on 02/Aug/21
100x^(lg(x))  = x^3    ⇒   x = ?
$$\mathrm{100}\boldsymbol{{x}}^{\boldsymbol{{lg}}\left(\boldsymbol{{x}}\right)} \:=\:\boldsymbol{{x}}^{\mathrm{3}} \:\:\:\Rightarrow\:\:\:\boldsymbol{{x}}\:=\:? \\ $$
Answered by bramlexs22 last updated on 02/Aug/21
⇒100x^(log _(10) (x)) = x^3   ⇒2+(log _(10) x)^2 =3log _(10) x  ⇒y^2 −3y+2=0  ⇒(y−1)(y−2)=0   { ((y=1⇒log _(10) (x)=1⇒x=10)),((y=2⇒log _(10) (x)=2⇒x=100)) :}
$$\Rightarrow\mathrm{100x}^{\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{x}\right)} =\:\mathrm{x}^{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{2}+\left(\mathrm{log}\:_{\mathrm{10}} \mathrm{x}\right)^{\mathrm{2}} =\mathrm{3log}\:_{\mathrm{10}} \mathrm{x} \\ $$$$\Rightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{3y}+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{y}−\mathrm{1}\right)\left(\mathrm{y}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{y}=\mathrm{1}\Rightarrow\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{x}\right)=\mathrm{1}\Rightarrow\mathrm{x}=\mathrm{10}}\\{\mathrm{y}=\mathrm{2}\Rightarrow\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{x}\right)=\mathrm{2}\Rightarrow\mathrm{x}=\mathrm{100}}\end{cases} \\ $$
Commented by mathdanisur last updated on 02/Aug/21
Thank You Ser
$${Thank}\:{You}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *