Menu Close

16x-9y-1-find-x-and-y-




Question Number 147320 by Gbenga last updated on 19/Jul/21
16x+9y=1  find x and y
$$\mathrm{16}{x}+\mathrm{9}{y}=\mathrm{1} \\ $$$${find}\:{x}\:{and}\:{y} \\ $$
Answered by floor(10²Eta[1]) last updated on 20/Jul/21
if x,y∈Z:  16x+9y=1  −2x≡−8(mod9)⇒x≡4(mod9)  ⇒x=9a+4  16(9a+4)+9y=1  144a+64+9y=1  y=−7−16a  (x,y)=(9a+4,−16a−7),∀a∈Z  if x,y∈C  16x=1−9y  x=((1−9y)/(16))  (x,y)=(((1−9k)/(16)),k),∀k∈C
$$\mathrm{if}\:\mathrm{x},\mathrm{y}\in\mathbb{Z}: \\ $$$$\mathrm{16x}+\mathrm{9y}=\mathrm{1} \\ $$$$−\mathrm{2x}\equiv−\mathrm{8}\left(\mathrm{mod9}\right)\Rightarrow\mathrm{x}\equiv\mathrm{4}\left(\mathrm{mod9}\right) \\ $$$$\Rightarrow\mathrm{x}=\mathrm{9a}+\mathrm{4} \\ $$$$\mathrm{16}\left(\mathrm{9a}+\mathrm{4}\right)+\mathrm{9y}=\mathrm{1} \\ $$$$\mathrm{144a}+\mathrm{64}+\mathrm{9y}=\mathrm{1} \\ $$$$\mathrm{y}=−\mathrm{7}−\mathrm{16a} \\ $$$$\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{9a}+\mathrm{4},−\mathrm{16a}−\mathrm{7}\right),\forall\mathrm{a}\in\mathbb{Z} \\ $$$$\mathrm{if}\:\mathrm{x},\mathrm{y}\in\mathbb{C} \\ $$$$\mathrm{16x}=\mathrm{1}−\mathrm{9y} \\ $$$$\mathrm{x}=\frac{\mathrm{1}−\mathrm{9y}}{\mathrm{16}} \\ $$$$\left(\mathrm{x},\mathrm{y}\right)=\left(\frac{\mathrm{1}−\mathrm{9k}}{\mathrm{16}},\mathrm{k}\right),\forall\mathrm{k}\in\mathbb{C} \\ $$
Commented by Gbenga last updated on 20/Jul/21
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *