Menu Close

17-202-the-end-3-number-




Question Number 126542 by MathSh last updated on 21/Dec/20
17^(202)   the end  3 number?
17202theend3number?
Commented by AlagaIbile last updated on 21/Dec/20
Answered by Olaf last updated on 21/Dec/20
17^0  = 1  17^1  = 17 → 7  17^2  : 7×7 = 49 → 9  17^3  : 7×9 = 63 → 3  17^4  : 7×3 = 21 → 1  ...  The end digit is :  1 for 17^(4n) , n∈N  7 for 17^(4n+1)   9 for 17^(4n+2)   3 for 17^(4n+3)   202 = 4×50+2 ⇒ end digit is 9  Let u_n  = ((17^(4n+2) −9)/(10))  u_(n+1)  = ((17^(4(n+1)+2) −9)/(10))  u_(n+1)  = ((17^(4.) 17^(4n+2) −9)/(10))  u_(n+1)  = ((17^(4.) 10.((17^(4n+2) −9)/(10))+9.17^4 −9)/(10))  ((17^(4.) 10.u_n +9(17^4 −1))/(10))  End digit of 17^4  = 1  ⇒ end digit of u_(n+1)  = end digit of u_n   u_2  = 28 ⇒ end digit of u_(50)  = 8  But u_(50)  = ((17^(202) −9)/(10))  ⇒ second end digit of 17^(202)  = 8  ...to be continued...
170=1171=177172:7×7=499173:7×9=633174:7×3=211Theenddigitis:1for174n,nN7for174n+19for174n+23for174n+3202=4×50+2enddigitis9Letun=174n+2910un+1=174(n+1)+2910un+1=174.174n+2910un+1=174.10.174n+2910+9.174910174.10.un+9(1741)10Enddigitof174=1enddigitofun+1=enddigitofunu2=28enddigitofu50=8Butu50=17202910secondenddigitof17202=8tobecontinued
Commented by MathSh last updated on 21/Dec/20
Thanks sir, answer sir
Thankssir,answersir

Leave a Reply

Your email address will not be published. Required fields are marked *