Menu Close

17x-3-mod-29-




Question Number 110519 by bobhans last updated on 29/Aug/20
      17x ≡ 3 (mod 29)
$$\:\:\:\:\:\:\mathrm{17x}\:\equiv\:\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{29}\right) \\ $$
Commented by kaivan.ahmadi last updated on 29/Aug/20
17x≡^(29) 3⇒34x≡^(29) 6⇒5x≡^(29) 6⇒30x≡^(29) 36⇒  x≡^(29) 7⇒x=29k+7; k∈Z
$$\mathrm{17}{x}\overset{\mathrm{29}} {\equiv}\mathrm{3}\Rightarrow\mathrm{34}{x}\overset{\mathrm{29}} {\equiv}\mathrm{6}\Rightarrow\mathrm{5}{x}\overset{\mathrm{29}} {\equiv}\mathrm{6}\Rightarrow\mathrm{30}{x}\overset{\mathrm{29}} {\equiv}\mathrm{36}\Rightarrow \\ $$$${x}\overset{\mathrm{29}} {\equiv}\mathrm{7}\Rightarrow{x}=\mathrm{29}{k}+\mathrm{7};\:{k}\in\mathbb{Z} \\ $$
Commented by Rasheed.Sindhi last updated on 29/Aug/20
⊓∣^• ⊏∃ ∣_•
$$\sqcap\overset{\bullet} {\mid}\sqsubset\exists\:\underset{\bullet} {\mid} \\ $$
Answered by bemath last updated on 29/Aug/20
we want to work out a multiplicative  inverse of 17 (mod 29)  →17×12=1 (mod 29)  so we have 12×17x ≡ 12×3 (mod 29)  ⇒ x ≡ 36 (mod 29)  ⇒x ≡ 7 (mod 29) or we got   ⇒x = 7 + 29k.
$$\mathrm{we}\:\mathrm{want}\:\mathrm{to}\:\mathrm{work}\:\mathrm{out}\:\mathrm{a}\:\mathrm{multiplicative} \\ $$$$\mathrm{inverse}\:\mathrm{of}\:\mathrm{17}\:\left(\mathrm{mod}\:\mathrm{29}\right) \\ $$$$\rightarrow\mathrm{17}×\mathrm{12}=\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{29}\right) \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have}\:\mathrm{12}×\mathrm{17}{x}\:\equiv\:\mathrm{12}×\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{29}\right) \\ $$$$\Rightarrow\:{x}\:\equiv\:\mathrm{36}\:\left({mod}\:\mathrm{29}\right) \\ $$$$\Rightarrow{x}\:\equiv\:\mathrm{7}\:\left(\mathrm{mod}\:\mathrm{29}\right)\:\mathrm{or}\:\mathrm{we}\:\mathrm{got}\: \\ $$$$\Rightarrow{x}\:=\:\mathrm{7}\:+\:\mathrm{29}{k}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *