Question Number 46323 by MJS last updated on 24/Oct/18
$$\left(\mathrm{1}{a}\right)\:\:\int\frac{{dx}}{\mathrm{e}^{\mathrm{5}{x}} +\mathrm{e}^{\mathrm{3}{x}} +\mathrm{e}^{\mathrm{2}{x}} }=? \\ $$$$\left(\mathrm{1}{b}\right)\:\:\int\frac{{dx}}{\mathrm{e}^{\mathrm{5}{x}} −\mathrm{e}^{\mathrm{3}{x}} −\mathrm{e}^{\mathrm{2}{x}} }=? \\ $$$$\left(\mathrm{2}{a}\right)\:\:\int\frac{{dx}}{{x}^{\frac{\mathrm{5}}{\mathrm{3}}} +{x}^{\frac{\mathrm{3}}{\mathrm{5}}} }=? \\ $$$$\left(\mathrm{2}{b}\right)\:\:\int\frac{{dx}}{{x}^{\frac{\mathrm{5}}{\mathrm{3}}} −{x}^{\frac{\mathrm{3}}{\mathrm{5}}} }=? \\ $$
Commented by maxmathsup by imad last updated on 24/Oct/18
$$\left(\mathrm{2}{a}\right)\:{we}\:{use}\:{the}\:{changement}\:{x}={t}^{\mathrm{15}} \:\Rightarrow \\ $$$${I}\:=\:\int\:\:\:\frac{\mathrm{15}\:{t}^{\mathrm{14}} {dt}}{\left({t}^{\mathrm{15}} \right)^{\frac{\mathrm{5}}{\mathrm{3}}} \:+\left({t}^{\mathrm{15}} \right)^{\frac{\mathrm{3}}{\mathrm{5}}} }\:=\:\int\:\:\:\frac{\mathrm{15}\:{t}^{\mathrm{14}} }{{t}^{\mathrm{25}} \:+\:{t}^{\mathrm{9}} }\:{dt}\:=\mathrm{15}\:\int\:\:\:\frac{{t}^{\mathrm{5}} }{{t}^{\mathrm{16}} \:+\mathrm{1}}\:{dt}\:\:{but} \\ $$$${t}^{\mathrm{16}} \:+\mathrm{1}\:=\left({t}^{\mathrm{8}} \right)^{\mathrm{2}} \:+\mathrm{1}\:=\left({t}^{\mathrm{8}} \:+\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{2}{t}^{\mathrm{8}} \:=\left({t}^{\mathrm{8}} \:+\mathrm{1}−\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \right)\left({t}^{\mathrm{8}} \:+\mathrm{1}+\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \right)\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\left({t}^{\mathrm{8}} \:−\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}\right)\left({t}^{\mathrm{8}} \:+\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}\right)}\:=\frac{\mathrm{1}}{\lambda}\left\{\:\frac{\mathrm{1}}{{t}^{\mathrm{8}} \:+\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}}\:−\frac{\mathrm{1}}{{t}^{\mathrm{8}} \:−\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}}\right\} \\ $$$$\lambda={t}^{\mathrm{8}} −\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:\:+\mathrm{1}−{t}^{\mathrm{8}} −\sqrt{\mathrm{2}}{t}^{\mathrm{4}} −\mathrm{1}\:=\:−\mathrm{2}\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{{t}^{\mathrm{5}} }{{t}^{\mathrm{16}} \:+\mathrm{1}}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\:\frac{{t}}{{t}^{\mathrm{8}} \:+\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}}\:−\frac{{t}}{{t}^{\mathrm{8}} \:−\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}}\right\}\:\Rightarrow \\ $$$${I}\:=−\frac{\mathrm{15}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\left\{\:\int\:\:\:\:\frac{{tdt}}{{t}^{\mathrm{8}} \:+\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}}\:−\int\:\:\:\frac{{tdt}}{{t}^{\mathrm{8}} \:−\sqrt{\mathrm{2}}\:{t}^{\mathrm{4}} \:+\mathrm{1}}\right\}\:{also}\: \\ $$$${t}^{\mathrm{8}} \:+\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}\:={u}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{u}\:+\mathrm{1}\:\:\left({u}={t}^{\mathrm{4}} \right) \\ $$$$={u}^{\mathrm{2}} \:+\mathrm{2}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{u}\:+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:=\left({u}\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\:=\left({t}^{\mathrm{4}} \:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\int\:\:\:\:\frac{{t}\:{dt}}{{t}^{\mathrm{8}} \:+\sqrt{\mathrm{2}}{t}^{\mathrm{4}} \:+\mathrm{1}}\:=\int\:\:\:\:\frac{{t}}{\left({t}^{\mathrm{4}} \:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}}\:{dt}\:\:\:{changement}\:{t}^{\mathrm{4}} =\alpha\:{give}\:\:{t}\:=\alpha^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\int\:\left(….\right){dt}\:=\:\int\:\:\:\:\frac{\alpha^{\frac{\mathrm{1}}{\mathrm{4}}} }{\left(\alpha+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}}\:\frac{\mathrm{1}}{\mathrm{4}}\:\alpha^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \:{d}\alpha \\ $$$$=\:\int\:\:\:\:\:\:\:\:\frac{{d}\alpha}{\:\sqrt{\alpha}\left\{\:\:\left(\alpha+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right\}}\:….{be}\:{continued}…. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Oct/18
$$\left.\mathrm{2}{a}\right)\int\frac{{dx}}{{x}^{{a}} +{x}^{{b}} }\:\:\:\left[{here}\:{ab}=\mathrm{1}\:\:\:{b}=\frac{\mathrm{5}}{\mathrm{3}}\:\:\:{a}=\frac{\mathrm{3}}{\mathrm{5}}\right] \\ $$$$\int\frac{{dx}}{{x}^{{b}} \left({x}^{{a}−{b}} +\mathrm{1}\right)} \\ $$$$\int{x}^{−{b}} \left(\mathrm{1}−{x}^{{t}} +{x}^{\mathrm{2}{t}} −{x}^{\mathrm{3}{t}} +…\right){dx}\:\:\:\left[\:{t}={a}−{b}\:\:=\right. \\ $$$$\int\left\{{x}^{−{b}} −{x}^{{t}−{b}} +{x}^{\mathrm{2}{t}−{b}} −{x}^{\mathrm{3}{t}−{b}} +..\:\right\}{dx} \\ $$$$=\frac{{x}^{−{b}+\mathrm{1}} }{−{b}+\mathrm{1}}−\frac{{x}^{{t}−{b}+\mathrm{1}} }{{t}−{b}+\mathrm{1}}+\frac{{x}^{\mathrm{2}{t}−{b}+\mathrm{1}} }{\mathrm{2}{t}−{b}+\mathrm{1}}−…. \\ $$$${pls}\:{check}\:\:{may}\:{i}\:{proceed}\:{this}\:{way}… \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\: \\ $$$$ \\ $$