Menu Close

2-0-4x-x-3-1-3-dx-




Question Number 127521 by mohammad17 last updated on 30/Dec/20
∫^( 2) _0 ((4x−x^3 ))^(1/3) dx
024xx33dx
Answered by Dwaipayan Shikari last updated on 30/Dec/20
∫_0 ^2 (x)^(1/3)  (((4−x^2 ))^(1/3) )dx         x^2 =4u⇒x=2(du/dx)  =2∫_0 ^1 x^(−(2/3)) (4−4u)^(1/3) du =2∫_0 ^1 u^(−(1/3)) (1−u)^(1/3) du=2β((2/3),(4/3))  =2((Γ((2/3))Γ((1/3)))/(3.Γ(2)))=((2π)/(3sin((π/3)))) =((4π)/(3(√3)))
02x3(4x23)dxx2=4ux=2dudx=201x23(44u)13du=201u13(1u)13du=2β(23,43)=2Γ(23)Γ(13)3.Γ(2)=2π3sin(π3)=4π33
Answered by mathmax by abdo last updated on 01/Jan/21
I=∫_0 ^2 ^3 (√(4x−x^3 ))dx ⇒I =−∫_0 ^2 x(^3 (√(−(4/x^2 )+1)))dx  changement (2/x) =(1/t) ⇒x=2t ⇒I =−∫_0 ^1 (2t)(−(1/t^2 )+1)^(1/3) (2dt)  =−4∫_0 ^1 t(((−1+t^2 )/t^2 ))^(1/3)  dt =−4 ∫_0 ^1  (t/t^(2/3) )(t^2 −1)^(1/3)  dt  =4 ∫_0 ^1  t^(1/3) (1−t^2 )^(1/3)  dt =_(t=(√u))   4∫_0 ^1  u^(1/6) (1−u)^(1/3)  (du/(2(√u)))  =2 ∫_0 ^1  u^((1/6)−(1/2)) (1−u)^(1/3) du =2 ∫_0 ^1  u^(−(1/3))  (1−u)^(1/3)  du=2B((2/3),(4/3))  =2 ((Γ((2/3))Γ((4/3)))/(Γ((2/3)+(4/3))))=(2/(Γ(2)))×Γ((2/3))Γ((4/3))
I=0234xx3dxI=02x(34x2+1)dxchangement2x=1tx=2tI=01(2t)(1t2+1)13(2dt)=401t(1+t2t2)13dt=401tt23(t21)13dt=401t13(1t2)13dt=t=u401u16(1u)13du2u=201u1612(1u)13du=201u13(1u)13du=2B(23,43)=2Γ(23)Γ(43)Γ(23+43)=2Γ(2)×Γ(23)Γ(43)
Commented by mathmax by abdo last updated on 01/Jan/21
I=2Γ((2/3)).Γ((1/3)+1) =2Γ((2/3))×(1/3)Γ((1/3))  =(2/3)Γ((1/3)).Γ(1−(1/3))=(2/3)×(π/(sin((π/3)))) =((2π)/(3×((√3)/2))) =((4π)/(3(√3)))
I=2Γ(23).Γ(13+1)=2Γ(23)×13Γ(13)=23Γ(13).Γ(113)=23×πsin(π3)=2π3×32=4π33

Leave a Reply

Your email address will not be published. Required fields are marked *