Menu Close

2-0-x-y-3-cos-xdx-yd-2-y-dx-2-dy-dx-2-ky-5-sin-x-y-0-a-y-0-0-solve-the-differential-equation-Laplace-tranforms-might-be-helpful-i-think-




Question Number 61635 by ajfour last updated on 05/Jun/19
2(∫_0 ^( x) y^3 cos xdx)[((yd^2 y)/dx^2 )−((dy/dx))^2 ]             = ky^5 sin x     ;      y(0)=a, y′(0)=0 .   solve the differential equation.  (Laplace tranforms might      be helpful, i think).
$$\mathrm{2}\left(\int_{\mathrm{0}} ^{\:{x}} {y}^{\mathrm{3}} \mathrm{cos}\:{xdx}\right)\left[\frac{{yd}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{ky}^{\mathrm{5}} \mathrm{sin}\:{x}\:\:\:\:\:;\:\: \\ $$$$\:\:{y}\left(\mathrm{0}\right)={a},\:{y}'\left(\mathrm{0}\right)=\mathrm{0}\:. \\ $$$$\:{solve}\:{the}\:{differential}\:{equation}. \\ $$$$\left({Laplace}\:{tranforms}\:{might}\right. \\ $$$$\left.\:\:\:\:{be}\:{helpful},\:{i}\:{think}\right). \\ $$
Answered by perlman last updated on 05/Jun/19
yeah ∫y^3 cos(x)≠y^3 sin(x)==  i will try[it[
$${yeah}\:\int{y}^{\mathrm{3}} {cos}\left({x}\right)\neq{y}^{\mathrm{3}} {sin}\left({x}\right)== \\ $$$${i}\:{will}\:{try}\left[{it}\left[\right.\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *