Menu Close

2-1-2-1-x-4-x-2-1-x-2-1-2-dx-




Question Number 101601 by Dwaipayan Shikari last updated on 03/Jul/20
∫_((√2)−1) ^((√2)+1) ((x^4 +x^2 +1)/((x^2 +1)^2 ))dx
212+1x4+x2+1(x2+1)2dx
Answered by bemath last updated on 03/Jul/20
∫ (((x^2 +1)^2 −x^2 )/((x^2 +1)^2 )) dx = x−∫ (x^2 /((x^2 +1)^2 )) dx  I_2 = ∫ (x^2 /((x^2 +1)^2 )) dx   [ x = tan p ]   I_2  = ∫ ((tan^2 p . sec^2 p dp)/(sec^4 p))  = ∫ tan^2 p cos^2 p dp   = ∫ ((1/2)−(1/2)cos 2p) dp  = (1/2)p −(1/4)sin 2p =(1/2)tan^(−1) (x)−(x/(2(x^2 +1)))  I= 2−(1/2)(tan^(−1) ((√2)+1)−tan^(−1) ((√2)−1))  −(1/2)((((√2)+1)/(4+2(√2))) −(((√2)−1)/(4−2(√2))))
(x2+1)2x2(x2+1)2dx=xx2(x2+1)2dxI2=x2(x2+1)2dx[x=tanp]I2=tan2p.sec2pdpsec4p=tan2pcos2pdp=(1212cos2p)dp=12p14sin2p=12tan1(x)x2(x2+1)I=212(tan1(2+1)tan1(21))12(2+14+2221422)

Leave a Reply

Your email address will not be published. Required fields are marked *