Menu Close

2-1-2-2-2-3-2-n-0-5-45-n-




Question Number 119679 by Khalmohmmad last updated on 26/Oct/20
2^1 ×2^2 ×2^3 ×...×2^n =(0.5)^(−45)   n=?
$$\mathrm{2}^{\mathrm{1}} ×\mathrm{2}^{\mathrm{2}} ×\mathrm{2}^{\mathrm{3}} ×…×\mathrm{2}^{{n}} =\left(\mathrm{0}.\mathrm{5}\right)^{−\mathrm{45}} \\ $$$${n}=? \\ $$
Answered by Ar Brandon last updated on 26/Oct/20
2^1 ×2^2 ×2^3 ×...×2^n =(0.5)^(−45)   2^(1+2+3+∙∙∙+n) =(2^(−1) )^(−45) =2^(45)   ((n(n+1))/2)=45 ⇒ n^2 +n−90=0  ⇒(n+10)(n−9)=0 ,   n=−10 ∨ n=9   n∈Z^+  ⇒ n=9
$$\mathrm{2}^{\mathrm{1}} ×\mathrm{2}^{\mathrm{2}} ×\mathrm{2}^{\mathrm{3}} ×…×\mathrm{2}^{\mathrm{n}} =\left(\mathrm{0}.\mathrm{5}\right)^{−\mathrm{45}} \\ $$$$\mathrm{2}^{\mathrm{1}+\mathrm{2}+\mathrm{3}+\centerdot\centerdot\centerdot+\mathrm{n}} =\left(\mathrm{2}^{−\mathrm{1}} \right)^{−\mathrm{45}} =\mathrm{2}^{\mathrm{45}} \\ $$$$\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{45}\:\Rightarrow\:\mathrm{n}^{\mathrm{2}} +\mathrm{n}−\mathrm{90}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{n}+\mathrm{10}\right)\left(\mathrm{n}−\mathrm{9}\right)=\mathrm{0}\:,\: \\ $$$$\mathrm{n}=−\mathrm{10}\:\vee\:\mathrm{n}=\mathrm{9}\: \\ $$$$\mathrm{n}\in\mathbb{Z}^{+} \:\Rightarrow\:\mathrm{n}=\mathrm{9} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *