Menu Close

2-1-log-x-243-x-log-x-x-5-9-1-3-




Question Number 163061 by tounghoungko last updated on 03/Jan/22
 (2)^(1/(log _x (((243)/x))))  = ((log _x ((x^5 /9))))^(1/3)
2logx(243x)=logx(x59)3
Answered by mahdipoor last updated on 03/Jan/22
get 5−2log_x 3=u   { ((log_x (((243)/x))=5log_x 3−1=((−5)/2)u+((23)/2) )),((log_x ((x^5 /9))=5−2log_x 3=u)) :}  ⇒2^((1/2)(11.5−2.5u)) =u^(1/3) ⇒ get 2^(1.5) =e^(0.4A)   ⇒e^(A(4.6−u)) =u⇒e^(4.6A) =ue^(Au) ⇒Ae^(4.6A) =Aue^(Au)   Au=w(Ae^(4.6A) )⇒5−2log_x 3=(1/A)w(Ae^(4.6A) )  ⇒x=9^(((A/(5A−W))))    { ((A=((15)/4)ln2)),((W=w(Ae^(4.6A) ))) :}
get52logx3=u{logx(243x)=5logx31=52u+232logx(x59)=52logx3=u212(11.52.5u)=u13get21.5=e0.4AeA(4.6u)=ue4.6A=ueAuAe4.6A=AueAuAu=w(Ae4.6A)52logx3=1Aw(Ae4.6A)x=9(A5AW){A=154ln2W=w(Ae4.6A)

Leave a Reply

Your email address will not be published. Required fields are marked *