Menu Close

2-1-log-x-243-x-log-x-x-5-9-1-3-




Question Number 163061 by tounghoungko last updated on 03/Jan/22
 (2)^(1/(log _x (((243)/x))))  = ((log _x ((x^5 /9))))^(1/3)
$$\:\sqrt[{\mathrm{log}\:_{{x}} \left(\frac{\mathrm{243}}{{x}}\right)}]{\mathrm{2}}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{log}\:_{{x}} \left(\frac{{x}^{\mathrm{5}} }{\mathrm{9}}\right)}\: \\ $$
Answered by mahdipoor last updated on 03/Jan/22
get 5−2log_x 3=u   { ((log_x (((243)/x))=5log_x 3−1=((−5)/2)u+((23)/2) )),((log_x ((x^5 /9))=5−2log_x 3=u)) :}  ⇒2^((1/2)(11.5−2.5u)) =u^(1/3) ⇒ get 2^(1.5) =e^(0.4A)   ⇒e^(A(4.6−u)) =u⇒e^(4.6A) =ue^(Au) ⇒Ae^(4.6A) =Aue^(Au)   Au=w(Ae^(4.6A) )⇒5−2log_x 3=(1/A)w(Ae^(4.6A) )  ⇒x=9^(((A/(5A−W))))    { ((A=((15)/4)ln2)),((W=w(Ae^(4.6A) ))) :}
$${get}\:\mathrm{5}−\mathrm{2}{log}_{{x}} \mathrm{3}={u} \\ $$$$\begin{cases}{{log}_{{x}} \left(\frac{\mathrm{243}}{{x}}\right)=\mathrm{5}{log}_{{x}} \mathrm{3}−\mathrm{1}=\frac{−\mathrm{5}}{\mathrm{2}}{u}+\frac{\mathrm{23}}{\mathrm{2}}\:}\\{{log}_{{x}} \left(\frac{{x}^{\mathrm{5}} }{\mathrm{9}}\right)=\mathrm{5}−\mathrm{2}{log}_{{x}} \mathrm{3}={u}}\end{cases} \\ $$$$\Rightarrow\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{11}.\mathrm{5}−\mathrm{2}.\mathrm{5}{u}\right)} ={u}^{\frac{\mathrm{1}}{\mathrm{3}}} \Rightarrow\:{get}\:\mathrm{2}^{\mathrm{1}.\mathrm{5}} ={e}^{\mathrm{0}.\mathrm{4}{A}} \\ $$$$\Rightarrow{e}^{{A}\left(\mathrm{4}.\mathrm{6}−{u}\right)} ={u}\Rightarrow{e}^{\mathrm{4}.\mathrm{6}{A}} ={ue}^{{Au}} \Rightarrow{Ae}^{\mathrm{4}.\mathrm{6}{A}} ={Aue}^{{Au}} \\ $$$${Au}={w}\left({Ae}^{\mathrm{4}.\mathrm{6}{A}} \right)\Rightarrow\mathrm{5}−\mathrm{2}{log}_{{x}} \mathrm{3}=\frac{\mathrm{1}}{{A}}{w}\left({Ae}^{\mathrm{4}.\mathrm{6}{A}} \right) \\ $$$$\Rightarrow{x}=\mathrm{9}^{\left(\frac{{A}}{\mathrm{5}{A}−{W}}\right)} \:\:\begin{cases}{{A}=\frac{\mathrm{15}}{\mathrm{4}}{ln}\mathrm{2}}\\{{W}={w}\left({Ae}^{\mathrm{4}.\mathrm{6}{A}} \right)}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *