Menu Close

2-1-x-2-1-x-6-x-




Question Number 101803 by dw last updated on 04/Jul/20
((√2)−1)^x +((√2)+1)^x =((√6))^x
(21)x+(2+1)x=(6)x
Commented by Dwaipayan Shikari last updated on 04/Jul/20
x=2
x=2
Commented by dw last updated on 04/Jul/20
solution step by step please!
solutionstepbystepplease!
Answered by 1549442205 last updated on 05/Jul/20
⇔((((√2)−1)/( (√6))))^x +((((√2)+1)/( (√6))))^x =1  For x=2 we get ((((√2)−1)/( (√6))))^2 +((((√2)+1)/( (√6))))^2 =  ((3−2(√2)+3+2(√2))/6)=1 ,so x=2 is the root   of given equation.We prove that it is   the unique root.  Putting f(x)=((((√2)−1)/( (√6))))^x +((((√2)+1)/( (√6))))^x   We have f ′(x)=⇔((((√2)−1)/( (√6))))^x ln((((√2)−1)/( (√6))))+((((√2)+1)/( (√6))))^x ln((((√2)+1)/( (√6))))<0  because (((√2)±1)/( (√6)))<1⇒ln((((√2)±1)/( (√6))))<0  ⇒f(x) is an  decreasing function on  (−∞;+∞),so the finded root x=2 is unique
(216)x+(2+16)x=1Forx=2weget(216)2+(2+16)2=322+3+226=1,sox=2istherootofgivenequation.Weprovethatitistheuniqueroot.Puttingf(x)=(216)x+(2+16)xWehavef(x)=⇔(216)xln(216)+(2+16)xln(2+16)<0because2±16<1ln(2±16)<0f(x)isandecreasingfunctionon(;+),sothefindedrootx=2isunique
Commented by dw last updated on 04/Jul/20
Thank you!
Thankyou!
Commented by 1549442205 last updated on 05/Jul/20
You are welcome sir
Youarewelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *