Menu Close

2-2-1-cosx-3-2sinx-dx-please-help-me-




Question Number 152572 by rexford last updated on 29/Aug/21
∫_(−(Π/2)) ^(Π/2) ((1+cosx)/(3+2sinx))dx  please,help me
Π2Π21+cosx3+2sinxdxplease,helpme
Answered by Ar Brandon last updated on 29/Aug/21
I=∫_(−(π/2)) ^(π/2) ((1+cosx)/(3+2sinx))dx, t=tan(x/2)⇒2dt=(1+t^2 )dx    =∫_(−1) ^1 ((1+((1−t^2 )/(1+t^2 )))/(3+2((2t)/(1+t^2 ))))∙(2/(1+t^2 ))dt=4∫_(−1) ^1 (dt/((1+t^2 )(3t^2 +4t+3)))  (1/((1+t^2 )(3t^2 +4t+3)))=((at+b)/(t^2 +1))+((ct+d)/(3t^2 +4t+3))  =(((at+b)(3t^2 +4t+3)+(ct+d)(t^2 +1))/)  3a+c=0, 3b+d=1, 4a+3b+d=0⇒a=−(1/4), c=(3/4),   3a+4b+c=0⇒b=0, d=1  I=4∫_(−1) ^1 (−(t/(4(t^2 +1)))+((3t+4)/(4(3t^2 +4t+3))))dt    =4[−((ln(t^2 +1))/8)+((ln(3t^2 +4t+3))/8)]_(−1) ^1 +4∫_(−1) ^1 (dt/(3t^2 +4t+3))    =ln(√5)+(4/3)∫_(−1) ^1 (dt/(t^2 +(4/3)t+1))=ln(√5)+(4/3)∙(3/2)∙[arctan(((3t+4)/2))]_(−1) ^1     =ln(√5)+2(arctan(7)−arctan((1/2)))
I=π2π21+cosx3+2sinxdx,t=tanx22dt=(1+t2)dx=111+1t21+t23+22t1+t221+t2dt=411dt(1+t2)(3t2+4t+3)1(1+t2)(3t2+4t+3)=at+bt2+1+ct+d3t2+4t+3=(at+b)(3t2+4t+3)+(ct+d)(t2+1)3a+c=0,3b+d=1,4a+3b+d=0a=14,c=34,3a+4b+c=0b=0,d=1I=411(t4(t2+1)+3t+44(3t2+4t+3))dt=4[ln(t2+1)8+ln(3t2+4t+3)8]11+411dt3t2+4t+3=ln5+4311dtt2+43t+1=ln5+4332[arctan(3t+42)]11=ln5+2(arctan(7)arctan(12))
Commented by SANOGO last updated on 30/Aug/21
Commented by puissant last updated on 30/Aug/21
lim_(n→∞) (1/n)Σ_(k=1) ^n ln(1+(k^2 /n^2 ))  =lim_(n→∞) ((b−a)/n)f(a+k((b−a)/n))  =∫_0 ^1 ln(1+x^2 )dx=K   { ((u=ln(1+x^2 ))),((v′=1)) :} ⇒  { ((u′=((2x)/(1+x^2 )))),((v=x)) :}  K=[xln(1+x^2 )]_0 ^1 −2∫_0 ^1 (x^2 /(1+x^2 ))dx  =ln2−2∫_0 ^1 ((x^2 +1)/(1+x^2 ))dx+2∫_0 ^1 (1/(1+x^2 ))dx  =ln2−2[x]_0 ^1 +2[arctanx]_0 ^1   =ln2−2+(π/2)  K=lnQ ⇒ Q=e^K ..  ⇒ Q=e^(ln2−2+(π/2)) = 2(e^(π/2) /e^2 )..
limn1nnk=1ln(1+k2n2)=limnbanf(a+kban)=01ln(1+x2)dx=K{u=ln(1+x2)v=1{u=2x1+x2v=xK=[xln(1+x2)]01201x21+x2dx=ln2201x2+11+x2dx+20111+x2dx=ln22[x]01+2[arctanx]01=ln22+π2K=lnQQ=eK..Q=eln22+π2=2eπ2e2..
Commented by SANOGO last updated on 30/Aug/21
merci bien mo prof
mercibienmoprof

Leave a Reply

Your email address will not be published. Required fields are marked *