Question Number 152572 by rexford last updated on 29/Aug/21

Answered by Ar Brandon last updated on 29/Aug/21
![I=∫_(−(π/2)) ^(π/2) ((1+cosx)/(3+2sinx))dx, t=tan(x/2)⇒2dt=(1+t^2 )dx =∫_(−1) ^1 ((1+((1−t^2 )/(1+t^2 )))/(3+2((2t)/(1+t^2 ))))∙(2/(1+t^2 ))dt=4∫_(−1) ^1 (dt/((1+t^2 )(3t^2 +4t+3))) (1/((1+t^2 )(3t^2 +4t+3)))=((at+b)/(t^2 +1))+((ct+d)/(3t^2 +4t+3)) =(((at+b)(3t^2 +4t+3)+(ct+d)(t^2 +1))/) 3a+c=0, 3b+d=1, 4a+3b+d=0⇒a=−(1/4), c=(3/4), 3a+4b+c=0⇒b=0, d=1 I=4∫_(−1) ^1 (−(t/(4(t^2 +1)))+((3t+4)/(4(3t^2 +4t+3))))dt =4[−((ln(t^2 +1))/8)+((ln(3t^2 +4t+3))/8)]_(−1) ^1 +4∫_(−1) ^1 (dt/(3t^2 +4t+3)) =ln(√5)+(4/3)∫_(−1) ^1 (dt/(t^2 +(4/3)t+1))=ln(√5)+(4/3)∙(3/2)∙[arctan(((3t+4)/2))]_(−1) ^1 =ln(√5)+2(arctan(7)−arctan((1/2)))](https://www.tinkutara.com/question/Q152582.png)
Commented by SANOGO last updated on 30/Aug/21

Commented by puissant last updated on 30/Aug/21
![lim_(n→∞) (1/n)Σ_(k=1) ^n ln(1+(k^2 /n^2 )) =lim_(n→∞) ((b−a)/n)f(a+k((b−a)/n)) =∫_0 ^1 ln(1+x^2 )dx=K { ((u=ln(1+x^2 ))),((v′=1)) :} ⇒ { ((u′=((2x)/(1+x^2 )))),((v=x)) :} K=[xln(1+x^2 )]_0 ^1 −2∫_0 ^1 (x^2 /(1+x^2 ))dx =ln2−2∫_0 ^1 ((x^2 +1)/(1+x^2 ))dx+2∫_0 ^1 (1/(1+x^2 ))dx =ln2−2[x]_0 ^1 +2[arctanx]_0 ^1 =ln2−2+(π/2) K=lnQ ⇒ Q=e^K .. ⇒ Q=e^(ln2−2+(π/2)) = 2(e^(π/2) /e^2 )..](https://www.tinkutara.com/question/Q152586.png)
Commented by SANOGO last updated on 30/Aug/21
