Question Number 161294 by floor(10²Eta[1]) last updated on 15/Dec/21
$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} \mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Answered by puissant last updated on 20/Dec/21
$${f}\left({x}\right)={x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} } \\ $$$${f}\left({x}\right)={g}\left({x}\right)\:+\:{h}\left({x}\right) \\ $$$${g}\left({x}\right)={x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:\:{et}\:{h}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\: \\ $$$$\int_{−\mathrm{2}} ^{\mathrm{2}} {x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\Omega=\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx}\:;\:{x}=\mathrm{2}{sint}\:\rightarrow\:{dx}=\mathrm{2}{costdt} \\ $$$$\Rightarrow\:\Omega\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{4}\left(\mathrm{1}−{sin}^{\mathrm{2}} {t}\right)}\:\mathrm{2}{cost}\:{dt} \\ $$$$\Rightarrow\:\Omega\:=\:\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}} {t}\:{dt}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{1}+{cos}\mathrm{2}{t}\right\}{dt} \\ $$$$=\:\mathrm{2}\left[{t}+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{t}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\:\mathrm{2}\left[\left\{\frac{\pi}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{sin}\pi\right\}−\mathrm{0}\right] \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\:\:\:=\:\:\:\pi….\bigstar \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………………\mathscr{L}{e}\:{puissant}………………… \\ $$
Commented by Ar Brandon last updated on 15/Dec/21
$$\mathrm{g}\left({x}\right)\:\mathrm{is}\:\mathrm{even}. \\ $$
Commented by Ar Brandon last updated on 15/Dec/21
$$\mathrm{yep}\:\:\mathrm{odd},\:\mathrm{I}\:\mathrm{meant}. \\ $$