Question Number 126316 by benjo_mathlover last updated on 19/Dec/20
$$\:\:\underset{\:\sqrt{\mathrm{2}}} {\overset{\mathrm{2}{e}^{\sqrt{\mathrm{2}}} } {\int}}\mathrm{ln}\:\left(\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{9}\sqrt{{x}}}\right){dx}\:?\: \\ $$
Commented by liberty last updated on 19/Dec/20
$$\int\:\left(\mathrm{ln}\left(\:{e}^{{x}} \left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right)\right)−\mathrm{ln}\:\mathrm{9}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:{x}\right){dx}= \\ $$$$\int{x}+\mathrm{ln}\:\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right)−\mathrm{ln}\:\mathrm{9}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:{x}\:{dx}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} −{x}\mathrm{ln}\:\mathrm{9}−\frac{\mathrm{1}}{\mathrm{2}}\left({x}\mathrm{ln}\:{x}−{x}\right)+\int\mathrm{ln}\:\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}−{x}\mathrm{ln}\:\mathrm{9}\sqrt{{x}}\:+\int\:\mathrm{ln}\:\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}= \\ $$$$ \\ $$
Commented by Olaf last updated on 19/Dec/20
$$\mathrm{Let}\:{u}\:=\:{e}^{−{x}} \\ $$$$\int\mathrm{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}\:=\:−\int\frac{\mathrm{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}{{u}}{du} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{u}}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {u}^{{n}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {u}^{\mathrm{2}{n}} \\ $$$$\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\:\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {u}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\mathrm{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\:=\:\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}+\mathrm{2}} \\ $$$$−\frac{\mathrm{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}{{u}}\:=\:−\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{u}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{2}} \\ $$$$−\int\frac{\mathrm{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}{{u}}{du}\:=\:−\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$−\int\frac{\mathrm{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}{{u}}{du}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{u}^{\mathrm{2}{n}} }{{n}^{\mathrm{2}} } \\ $$$$\int\mathrm{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{e}^{−\mathrm{2}{nx}} }{{n}^{\mathrm{2}} } \\ $$