Menu Close

2-2x-1-1-3-x-3-1-




Question Number 124452 by liberty last updated on 03/Dec/20
 2 ((2x+1))^(1/3)  = x^3 −1
$$\:\mathrm{2}\:\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{1}}\:=\:{x}^{\mathrm{3}} −\mathrm{1}\: \\ $$
Commented by Dwaipayan Shikari last updated on 03/Dec/20
Golden ratio φ=((1+(√5))/2)=1.6180..
$${Golden}\:{ratio}\:\phi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}=\mathrm{1}.\mathrm{6180}.. \\ $$
Answered by mnjuly1970 last updated on 03/Dec/20
((2x+1))^(1/3)  =((x^3 −1)/2)  f(x)=((2x+1))^(1/3)  ⇒f^(−1) (x)=((x^3 −1)/2)  f^(−1) of=I_x =x  2x+1=x^3   x^3 −2x−1=0  x^3 −x−x−1=0  x(x−1)(x+1)−(x+1)=0    (x+1)(x^2 −x−1)=0     x=−1 & x=((1+_− (√5))/2) ✓
$$\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{1}}\:=\frac{{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{2}} \\ $$$${f}\left({x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{1}}\:\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)=\frac{{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{2}} \\ $$$${f}^{−\mathrm{1}} {of}={I}_{{x}} ={x} \\ $$$$\mathrm{2}{x}+\mathrm{1}={x}^{\mathrm{3}} \\ $$$${x}^{\mathrm{3}} −\mathrm{2}{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} −{x}−{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)−\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\:\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\:\:{x}=−\mathrm{1}\:\&\:{x}=\frac{\mathrm{1}\underset{−} {+}\sqrt{\mathrm{5}}}{\mathrm{2}}\:\checkmark \\ $$$$ \\ $$$$\:\: \\ $$
Commented by MJS_new last updated on 03/Dec/20
something went wrong. x=1 obviously is no  solution
$$\mathrm{something}\:\mathrm{went}\:\mathrm{wrong}.\:{x}=\mathrm{1}\:\mathrm{obviously}\:\mathrm{is}\:\mathrm{no} \\ $$$$\mathrm{solution} \\ $$
Commented by mnjuly1970 last updated on 03/Dec/20
thank you mr mjs..  you are right..  i made  a mistake in the  calulation (decomposition )
$${thank}\:{you}\:{mr}\:{mjs}.. \\ $$$${you}\:{are}\:{right}.. \\ $$$${i}\:{made}\:\:{a}\:{mistake}\:{in}\:{the} \\ $$$${calulation}\:\left({decomposition}\:\right) \\ $$
Commented by mnjuly1970 last updated on 03/Dec/20
$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *