Question Number 106503 by Dwaipayan Shikari last updated on 05/Aug/20
$$\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{18}}+\frac{\mathrm{2}}{\mathrm{27}}+\frac{\mathrm{2}}{\mathrm{324}}+…. \\ $$
Commented by Dwaipayan Shikari last updated on 05/Aug/20
$$\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}.\left(\mathrm{2}+\mathrm{1}\right)^{\mathrm{3}} }+….\right) \\ $$$$=\mathrm{2}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{3}} }+….\right) \\ $$$$=−\mathrm{2}{log}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=−\mathrm{2}{log}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:\:={log}\left(\frac{\mathrm{9}}{\mathrm{4}}\right)\:\:\:{x}=\mathrm{3} \\ $$$$=\mathrm{0}.\mathrm{81093}.. \\ $$
Commented by Ar Brandon last updated on 05/Aug/20
I think you changed the question.
I struggled hard to establish a general term.
Commented by mr W last updated on 05/Aug/20
$$\mathrm{2}+\frac{\mathrm{2}}{\mathrm{11}}+\frac{\mathrm{2}}{\mathrm{25}}+\frac{\mathrm{2}}{\mathrm{69}}+…=? \\ $$
Commented by Dwaipayan Shikari last updated on 05/Aug/20
Oh I had changed the question. Sorry for the inconvenience
Commented by Ar Brandon last updated on 05/Aug/20
Mr W
Commented by Dwaipayan Shikari last updated on 05/Aug/20
$${Great}\:{question} \\ $$
Commented by mr W last updated on 05/Aug/20
$${i}\:\:{was}\:{just}\:{wondering}\:{how}\:{you}\:{can}\:{find} \\ $$$${the}\:{general}\:{term}\:{through}\:{just}\:{four} \\ $$$${given}\:{terms}!\:{for}\:{me}\:{it}\:{is}\:{almost} \\ $$$${impossible}\:{to}\:{see}\:{the}\:{general}\:{term}, \\ $$$${for}\:{example}\:{my}\:{example}\:{above}. \\ $$
Commented by prakash jain last updated on 05/Aug/20
$$\mathrm{Suppose}\:\mathrm{1}..{k}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sequence} \\ $$$$\mathrm{are}\:\mathrm{given}\:\mathrm{and}\:\mathrm{formula} \\ $$$${g}\left({n}\right)\:\mathrm{satisifies}\:\mathrm{the}\:\mathrm{given}\:\mathrm{terms}. \\ $$$$\mathrm{then}\:{f}\left({n}\right)={h}\left({n}\right)\underset{{j}=\mathrm{1}} {\overset{{k}} {\prod}}\left({n}−{k}\right)+{g}\left({n}\right) \\ $$$$\mathrm{will}\:\mathrm{also}\:\mathrm{satify}\:\mathrm{the}\:\mathrm{given}\:\mathrm{sequence}. \\ $$$$\mathrm{where}\:{h}\left({n}\right)\:\mathrm{is}\:\mathrm{any}\:\mathrm{arbitary}\:\mathrm{function} \\ $$$$\mathrm{on}\:{n}. \\ $$$$\mathrm{So}\:\mathrm{there}\:\mathrm{always}\:\mathrm{exists}\:\mathrm{infinite}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{a}\:\mathrm{given}\:\mathrm{finite}\:\mathrm{terms}. \\ $$
Commented by Ar Brandon last updated on 06/Aug/20
Commented by 1549442205PVT last updated on 06/Aug/20
$$\mathrm{We}\:\mathrm{can}\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{term}\:\mathrm{in}\:\mathrm{form} \\ $$$$\frac{\mathrm{2}}{\mathrm{a}_{\mathrm{n}} }\mathrm{with}\:\mathrm{a}_{\mathrm{n}} =\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{3}} +\mathrm{bx}^{\mathrm{2}} +\mathrm{cx}+\mathrm{d}\:\mathrm{with}\:\mathrm{condition} \\ $$$$\mathrm{that}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1},\mathrm{f}\left(\mathrm{2}\right)=\mathrm{11},\mathrm{f}\left(\mathrm{3}\right)=\mathrm{25},\mathrm{f}\left(\mathrm{4}\right)=\mathrm{69} \\ $$$$\mathrm{which}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{four} \\ $$$$\mathrm{unknows}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{and}\:\mathrm{get} \\ $$$$\mathrm{a}=\frac{\mathrm{13}}{\mathrm{3}},\mathrm{b}=−\mathrm{24},\mathrm{c}=\frac{\mathrm{155}}{\mathrm{3}},\mathrm{d}=−\mathrm{31and}\:\mathrm{so} \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{13}}{\mathrm{3}}\mathrm{n}^{\mathrm{3}} −\mathrm{24n}^{\mathrm{2}} +\mathrm{155n}−\mathrm{31which}\:\mathrm{from} \\ $$$$\mathrm{this}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{next}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given} \\ $$$$\mathrm{sequence}:\frac{\mathrm{2}}{\mathrm{169}},\frac{\mathrm{2}}{\mathrm{351}},\frac{\mathrm{2}}{\mathrm{641}},\frac{\mathrm{2}}{\mathrm{1065}},…\mathrm{and}\: \\ $$$$\mathrm{Of}\:\mathrm{course},\mathrm{here}\:\mathrm{need}\:\mathrm{must}\:\mathrm{be}\:\mathrm{suppose} \\ $$$$\mathrm{that}\:\mathrm{any}\:\:\mathrm{formular}\:\:\mathrm{was}\:\mathrm{found}\:\mathrm{out}\:\mathrm{only} \\ $$$$\mathrm{need}\:\mathrm{to}\:\mathrm{correct}\:\mathrm{for}\:\mathrm{four}\:\mathrm{given}\:\mathrm{terms} \\ $$$$\mathrm{because}\:\mathrm{otherwise}\:\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{a}\:\: \\ $$$$\mathrm{polynomial}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{5}\:\mathrm{which}\:\mathrm{also}\:\mathrm{get}\: \\ $$$$\mathrm{four}\:\mathrm{first}\:\mathrm{values}\:\mathrm{of}\:\mathrm{given}\:\mathrm{sequence} \\ $$$$\mathrm{Which}\:\mathrm{this}\:\mathrm{completely}\:\mathrm{depend}\:\mathrm{on}\:\mathrm{the}\: \\ $$$$\mathrm{viewer}\:\mathrm{pointof}\:\mathrm{person}\:\mathrm{give}\:\mathrm{the}\:\mathrm{question} \\ $$$$ \\ $$
Commented by Ar Brandon last updated on 06/Aug/20
Wow, thanks for the knowledge Sir.