Menu Close

2-3-2-2-3-2-3-2-2-3-simplify-




Question Number 59764 by ANTARES VY last updated on 14/May/19
((2+(√3))/( (√2)+(√(2+(√3)))))+((2−(√3))/( (√2)−(√(2−(√3))))).  simplify.
2+32+2+3+23223.simplify.
Answered by Kunal12588 last updated on 14/May/19
((2+(√3))/( (√2)+(√(2+(√3)))))+((2−(√3))/( (√2)−(√(2−(√3)))))  =(((√2)(2+(√3)))/(3+(√3)))+(((√2)(2−(√3)))/(3−(√3)))  =(√2)(((6+(√3)−3+6−(√3)−3)/(9−3)))  =(√2)
2+32+2+3+23223=2(2+3)3+3+2(23)33=2(6+33+63393)=2
Commented by Kunal12588 last updated on 14/May/19
finding roots of surds   of type (√(a±(√b)))  (√(a±(√b)))=(√m)±(√n)  ⇒a±b=(m+n)±2(√(mn))  ⇒m+n=a , 4mn=b  ⇒m−n=(√((m+n)^2 −4mn))=(√(a^2 −b))  ⇒m=((a+(√(a^2 −b)))/2) , n=((a−(√(a^2 −b)))/2)  ∴(√(a±(√b)))=(((√(a+(√(a^2 −b))))±(√(a−(√(a^2 −b)))))/( (√2)))  example  (√(2+(√3)))=(((√(2+(√(4−3))))+(√(2−(√(4−3)))))/( (√2)))=(((√3)+1)/( (√2)))  (√(2−(√3)))=(((√(2+(√(4−3))))−(√(2−(√(4−3)))))/( (√2)))=(((√3)−1)/( (√2)))  (√(14−3(√3)))=(((√(14+(√(196−27))))−(√(14−(√(196−27)))))/( (√2)))=((3(√3)−1)/( (√2)))
findingrootsofsurdsoftypea±ba±b=m±na±b=(m+n)±2mnm+n=a,4mn=bmn=(m+n)24mn=a2bm=a+a2b2,n=aa2b2a±b=a+a2b±aa2b2example2+3=2+43+2432=3+1223=2+432432=3121433=14+1962714196272=3312

Leave a Reply

Your email address will not be published. Required fields are marked *