Menu Close

2-3-u-2u-e-x-2-2pi-u-1-2-x-3x-2-u-du-u-gt-0-




Question Number 90110 by jagoll last updated on 21/Apr/20
∫_((2/3)u) ^(2u)  (e^(−(x/2)) /(2π (√((u−(1/2)x)(((3x)/2)−u))))) du   (u > 0 )
$$\underset{\frac{\mathrm{2}}{\mathrm{3}}\mathrm{u}} {\overset{\mathrm{2u}} {\int}}\:\frac{\mathrm{e}^{−\frac{\mathrm{x}}{\mathrm{2}}} }{\mathrm{2}\pi\:\sqrt{\left(\mathrm{u}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\right)\left(\frac{\mathrm{3x}}{\mathrm{2}}−\mathrm{u}\right)}}\:\mathrm{du}\: \\ $$$$\left(\mathrm{u}\:>\:\mathrm{0}\:\right) \\ $$
Commented by MJS last updated on 21/Apr/20
dependent borders are not allowed  ∫_(f(x)) ^(g(x)) h(x)dx simply makes no sense
$$\mathrm{dependent}\:\mathrm{borders}\:\mathrm{are}\:\mathrm{not}\:\mathrm{allowed} \\ $$$$\underset{{f}\left({x}\right)} {\overset{{g}\left({x}\right)} {\int}}{h}\left({x}\right){dx}\:\mathrm{simply}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense} \\ $$
Commented by abdomathmax last updated on 21/Apr/20
you are right sir.
$${you}\:{are}\:{right}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *