Menu Close

2-3-x-2-2-3-x-2-4-




Question Number 103914 by bobhans last updated on 18/Jul/20
(2+(√3))^x^2   + (2−(√3))^x^2   = 4
(2+3)x2+(23)x2=4
Commented by som(math1967) last updated on 18/Jul/20
let (2+(√3))^x^2  =a  ∴(2−(√3))^x^2  =(1/a)  ⇒a^2 −4a+1=0  ⇒a=(2±(√3))  (2+(√3))^x^2  =(2+(√3))  ⇒x=±1  (2+(√3))^x^2  =(2+(√3))^(−1)   x=i
let(2+3)x2=a(23)x2=1aa24a+1=0a=(2±3)(2+3)x2=(2+3)x=±1(2+3)x2=(2+3)1x=i
Commented by bemath last updated on 18/Jul/20
thank you both
thankyouboth
Answered by OlafThorendsen last updated on 18/Jul/20
X = (2+(√3))^x^2    (2−(√3))^x^2   = ((1/(2+(√3))))^x^2  = (1/((2+(√3))^x^2  )) = (1/X)  then X+(1/X) = 4  X^2 −4X+1 = 0  Δ = (−4)^2 −4(1)(1) = 12  X = ((−(−4)±(√(12)))/(2(1))) = 2±(√3)  1) X = 2+(√3)  x^2  = 1, x=±1  2) X = 2−(√3)  2−(√3) = (2+(√3))^x^2    (1/(2+(√3))) = (2+(√3))^x^2    (2+(√3))^(x^2 +1)  = 1  x^2 +1 = 0  x = ±i  S = {±1;±i}
X=(2+3)x2(23)x2=(12+3)x2=1(2+3)x2=1XthenX+1X=4X24X+1=0Δ=(4)24(1)(1)=12X=(4)±122(1)=2±31)X=2+3x2=1,x=±12)X=2323=(2+3)x212+3=(2+3)x2(2+3)x2+1=1x2+1=0x=±iS={±1;±i}
Answered by Rauny last updated on 18/Jul/20
(2+(√3))^x^2   + (2−(√3))^x^2   = 4   t:=2+(√3)  (1/(2+(√3)))=((2−(√3))/((2+(√3))(2−(√3))))=2−(√3)  ∴2−(√3)=(1/t)  t^x^2  +t^(−x^2 ) −4=0  u:=t^x^2   (∀u>0)  u−4+(1/u)=0  u^2 −4u+1=0  u=2±(√3)  t^x^2  =2±(√3)  x^2 =log_(2+(√3))  (2±(√3))  if u=2+(√3),  x^2 =1  x=±1  if u=2−(√3),  x^2 =log_(2+(√3))  (1/(2+(√3)))=−1 (∵2−(√3)=(1/(2+(√3))))  x=±i  ∴x=±1 or ±i ■
(2+3)x2+(23)x2=4t:=2+312+3=23(2+3)(23)=2323=1ttx2+tx24=0u:=tx2(u>0)u4+1u=0u24u+1=0u=2±3tx2=2±3x2=log2+3(2±3)ifu=2+3,x2=1x=±1ifu=23,x2=log2+312+3=1(23=12+3)x=±ix=±1or±i◼

Leave a Reply

Your email address will not be published. Required fields are marked *