Question Number 179529 by mathlove last updated on 30/Oct/22
$$\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{{x}} +\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} =\mathrm{4}\:\:\:\:\:\:{x}=? \\ $$
Answered by mr W last updated on 30/Oct/22
$$\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)=\mathrm{2}^{\mathrm{2}} −\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{4}−\mathrm{3}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}−\sqrt{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} }+\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} =\mathrm{4} \\ $$$${let}\:{t}=\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} \\ $$$$\frac{\mathrm{1}}{{t}}+{t}=\mathrm{4} \\ $$$${t}^{\mathrm{2}} −\mathrm{4}{t}+\mathrm{1}=\mathrm{0} \\ $$$${t}=\mathrm{2}\pm\sqrt{\mathrm{3}} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} =\mathrm{2}\pm\sqrt{\mathrm{3}}=\mathrm{2}+\sqrt{\mathrm{3}},\:\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{x}=\pm\mathrm{1} \\ $$
Commented by mathlove last updated on 30/Oct/22
$${thanks}\:{mr} \\ $$
Answered by cortano1 last updated on 30/Oct/22
$$\:\mathrm{let}\:\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{x}} \:=\:\mathrm{y}\:\Rightarrow\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{x}} =\frac{\mathrm{1}}{\mathrm{y}} \\ $$$$\:\Rightarrow\mathrm{y}+\frac{\mathrm{1}}{\mathrm{y}}\:=\:\mathrm{4}\:\Rightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{4y}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{y}−\mathrm{2}\right)^{\mathrm{2}} =\:\mathrm{3} \\ $$$$\Rightarrow\mathrm{y}=\mathrm{2}+\sqrt{\mathrm{3}}\:\mathrm{or}\:\mathrm{y}=\mathrm{2}−\sqrt{\mathrm{3}} \\ $$$$\begin{cases}{\mathrm{y}=\mathrm{2}−\sqrt{\mathrm{3}}\:\Rightarrow\mathrm{x}=\mathrm{1}}\\{\mathrm{y}=\mathrm{2}+\sqrt{\mathrm{3}}\Rightarrow\mathrm{x}=−\mathrm{1}}\end{cases} \\ $$
Answered by Frix last updated on 30/Oct/22
$${b}^{{x}} +{b}^{−{x}} ={y};\:{b}>\mathrm{0}\wedge{y}\geqslant\mathrm{2} \\ $$$$\mathrm{2cosh}\:\left({x}\mathrm{ln}\:{b}\right)\:={y} \\ $$$${x}=\frac{\mathrm{cosh}^{−\mathrm{1}} \:\frac{{y}}{\mathrm{2}}}{\mathrm{ln}\:{b}} \\ $$