Menu Close

2-4-ln-9-x-ln-9-x-ln-3-x-dx-




Question Number 163720 by alcohol last updated on 09/Jan/22
∫_2 ^( 4) ((√(ln(9−x)))/( (√(ln(9−x)))+(√(ln(3+x))))) dx
$$\int_{\mathrm{2}} ^{\:\mathrm{4}} \frac{\sqrt{{ln}\left(\mathrm{9}−{x}\right)}}{\:\sqrt{{ln}\left(\mathrm{9}−{x}\right)}+\sqrt{{ln}\left(\mathrm{3}+{x}\right)}}\:{dx} \\ $$$$ \\ $$
Answered by Mathspace last updated on 09/Jan/22
x=6−t ⇒t=6−x ⇒  I=∫_4 ^2  ((√(ln(3+t)))/( (√(ln(3+t)+(√(ln(9−t)))))))(−dt)  =∫_2 ^(4 )  ((√(ln(3+x)))/( (√(ln(3+x)))+(√(ln(9−x)))))dx ⇒  2I=∫_2 ^4 dx =2 ⇒I=1
$${x}=\mathrm{6}−{t}\:\Rightarrow{t}=\mathrm{6}−{x}\:\Rightarrow \\ $$$${I}=\int_{\mathrm{4}} ^{\mathrm{2}} \:\frac{\sqrt{{ln}\left(\mathrm{3}+{t}\right)}}{\:\sqrt{{ln}\left(\mathrm{3}+{t}\right)+\sqrt{{ln}\left(\mathrm{9}−{t}\right)}}}\left(−{dt}\right) \\ $$$$=\int_{\mathrm{2}} ^{\mathrm{4}\:} \:\frac{\sqrt{{ln}\left(\mathrm{3}+{x}\right)}}{\:\sqrt{{ln}\left(\mathrm{3}+{x}\right)}+\sqrt{{ln}\left(\mathrm{9}−{x}\right)}}{dx}\:\Rightarrow \\ $$$$\mathrm{2}{I}=\int_{\mathrm{2}} ^{\mathrm{4}} {dx}\:=\mathrm{2}\:\Rightarrow{I}=\mathrm{1} \\ $$
Commented by peter frank last updated on 11/Jan/22
great
$$\mathrm{great} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *