Menu Close

2-4-x-3-e-x-dx-




Question Number 118753 by carlosmald last updated on 19/Oct/20
∫_2 ^4 x^3 e^x dx
24x3exdx
Commented by mohammad17 last updated on 19/Oct/20
∫_2 ^( 4) x^3 e^x dx=∫_2 ^( 4) (x^3 e^x +3x^2 e^x −3x^2 e^x )dx     =∫_2 ^( 4) d(x^3 e^x )−3∫_2 ^( 4) (x^2 e^x +2xe^x −2xe^x )dx    =∫_2 ^( 4) d(x^3 e^x )−3∫_2 ^( 4) d(x^2 e^x )+6∫_2 ^( 4) (xe^x +e^x −e^x )dx    =∫_2 ^( 4) d(x^3 e^x )−3∫_2 ^( 4) d(x^2 e^x )+6∫_2 ^( 4) d(xe^x )−6∫_2 ^( 4) e^x dx    =(x^3 e^x −3x^2 e^x +6xe^x −6e^x )_2 ^4     =(64e^4 −48e^4 +24e^4 −6e^4 )−(8e^2 −12e^2 +12e^2 −6e^2 )    =34e^4 −2e^2     by:Mohammad Al−dolaimy
24x3exdx=24(x3ex+3x2ex3x2ex)dx=24d(x3ex)324(x2ex+2xex2xex)dx=24d(x3ex)324d(x2ex)+624(xex+exex)dx=24d(x3ex)324d(x2ex)+624d(xex)624exdx=(x3ex3x2ex+6xex6ex)24=(64e448e4+24e46e4)(8e212e2+12e26e2)=34e42e2by:MohammadAldolaimy
Answered by bemath last updated on 19/Oct/20
 by Tanzalin formula     determinant (((x^3      e^x )),((3x^2    e^x  (+))),((6x     e^x   (−))),((6        e^x  (+))),((0       e^x   (−))))  ∫ _2^3  x^3  e^x  dx = [ x^3 e^x −3x^2 e^x +6xe^x −6e^x  ]_2 ^3   = (e^x  [x^3 −3x^2 +6x−6 ] )_2 ^3   = 12e^3 −2e^2
byTanzalinformula|x3ex3x2ex(+)6xex()6ex(+)0ex()|23x3exdx=[x3ex3x2ex+6xex6ex]23=(ex[x33x2+6x6])23=12e32e2
Answered by Dwaipayan Shikari last updated on 19/Oct/20
∫x^3 e^x dx=x^3 e^x −3∫x^2 e^x   =x^3 e^x −3x^2 e^x +6∫xe^x   =x^3 e^x −3x^2 e^x +6xe^x −6e^x   =e^x (x^3 −3x^2 +6x−6)+C  ∫_2 ^4 x^3 e^x =34e^4 −2e^2
x3exdx=x3ex3x2ex=x3ex3x2ex+6xex=x3ex3x2ex+6xex6ex=ex(x33x2+6x6)+C24x3ex=34e42e2
Answered by peter frank last updated on 19/Oct/20
by part
bypart

Leave a Reply

Your email address will not be published. Required fields are marked *