Question Number 87669 by john santu last updated on 05/Apr/20
$$\int_{\mathrm{2}} ^{\:\:\mathrm{e}} \left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{x}}\right)\:\mathrm{dx}? \\ $$
Commented by mathmax by abdo last updated on 05/Apr/20
$${I}\:=\int_{\mathrm{2}} ^{{e}} \left(\frac{{lnx}−\mathrm{1}}{{ln}^{\mathrm{2}} {x}}\right){dx}\:{vhangement}\:{lnx}\:={t}\:{give} \\ $$$${I}\:=\int_{{ln}\mathrm{2}} ^{\mathrm{1}} \:\frac{{t}−\mathrm{1}}{{t}^{\mathrm{2}} }{e}^{{t}} \:{dt}\:\:=\int_{{ln}\mathrm{2}} ^{\mathrm{1}} \:\frac{\left({t}−\mathrm{1}\right){e}^{{t}} }{{t}^{\mathrm{2}} }{dt}\:=_{{by}\:{parts}} \:\left[−\frac{\mathrm{1}}{{t}}\left({t}−\mathrm{1}\right){e}^{{t}} \right]_{{ln}\left(\mathrm{2}\right)} ^{\mathrm{1}} \\ $$$$+\int_{{ln}\left(\mathrm{2}\right)} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{t}}\left\{\:\:{e}^{{t}} \:+\left({t}−\mathrm{1}\right){e}^{{t}} \right\}{dt}\:=\frac{\left({ln}\mathrm{2}−\mathrm{1}\right)\mathrm{2}}{{ln}\mathrm{2}}\:+\int_{{ln}\mathrm{2}} ^{\mathrm{1}} {e}^{{t}} \:{dt} \\ $$$$=\mathrm{2}−\frac{\mathrm{2}}{{ln}\mathrm{2}}\:+{e}−\mathrm{2}\:={e}−\frac{\mathrm{2}}{{ln}\mathrm{2}} \\ $$
Commented by Ar Brandon last updated on 05/Apr/20
$${It}\:{seems}\:{you}\:{made}\:{an}\:{error}\:{while}\:{integrating}\:{by}\:{part}. \\ $$$${It}'{s}\:{not}\:−\frac{\mathrm{1}}{{t}}\left({t}−\mathrm{1}\right){e}^{{t}} \:{but}\:\left({lnt}+\frac{\mathrm{1}}{{t}}\right){e}^{{t}} \\ $$$${May}\:{be}\:{you}\:{should}\:{verify}\:{your}\:{solution}. \\ $$
Commented by abdomathmax last updated on 05/Apr/20
$${no}\:{sir}\:{by}\:{psrts}\:{i}\:{have}\:{taken}\:{u}^{'} \:=\frac{\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$${and}\:{v}=\left({t}−\mathrm{1}\right){e}^{{t}} \:\:\: \\ $$$$ \\ $$
Commented by Ar Brandon last updated on 05/Apr/20
$${OK}\:{bro}.\:{It}'{s}\:{clear},\:{thanks}. \\ $$
Answered by TANMAY PANACEA. last updated on 05/Apr/20
$$\int_{\mathrm{2}} ^{{e}} \frac{{lnx}−\mathrm{1}}{\left({lnx}\right)^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{2}} ^{{e}} \frac{{lnx}×\frac{{dx}}{{dx}}−{x}×\frac{{d}}{{dx}}\left({lnx}\right)}{\left({lnx}\right)^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{2}} ^{{e}} \frac{{d}}{{dx}}\left(\frac{{x}}{{lnx}}\right){dx} \\ $$$$\int_{\mathrm{2}} ^{{e}} {d}\left(\frac{{x}}{{lnx}}\right)=\mid\frac{{x}}{{lnx}}\mid_{\mathrm{2}} ^{{e}} =\frac{{e}}{{lne}}−\frac{\mathrm{2}}{{ln}\mathrm{2}}={e}−\frac{\mathrm{2}}{{ln}\mathrm{2}}\left({corrected}\right) \\ $$
Commented by TANMAY PANACEA. last updated on 05/Apr/20
$${thak}\:{you}\:{sir} \\ $$
Commented by john santu last updated on 05/Apr/20
$$\mathrm{waw}===\mathrm{your}\:\mathrm{method}\: \\ $$$$\mathrm{funtastic}\:\mathrm{sir} \\ $$
Commented by Ar Brandon last updated on 05/Apr/20
$${Wow}! \\ $$