Menu Close

2-Find-the-middle-trem-s-in-the-expansion-of-following-x-2-1-x-3-14-




Question Number 26554 by das47955@mail.com last updated on 26/Dec/17
(2) Find the middle trem(s) in the  expansion of following−       (x^2 +(1/x^3 ))^(14)
$$\left(\mathrm{2}\right)\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{middle}}\:\boldsymbol{\mathrm{trem}}\left(\boldsymbol{\mathrm{s}}\right)\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{expansion}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{following}}− \\ $$$$\:\:\:\:\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }\right)^{\mathrm{14}} \\ $$
Answered by prakash jain last updated on 26/Dec/17
total number of terms n+1=15  middle term=8^(th)   (x^2 +(1/x^3 ))^(15) =Σ_(i=0) ^(14) ^(14) C_i (x^2 )^i ((1/x^3 ))^(14−i)   middlw term= ^(14) C_7 (x^2 )^7 ((1/x^3 ))^7 =^(14) C_7 x^(−7)
$$\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{terms}\:{n}+\mathrm{1}=\mathrm{15} \\ $$$$\mathrm{middle}\:\mathrm{term}=\mathrm{8}^{\mathrm{th}} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\mathrm{15}} =\underset{{i}=\mathrm{0}} {\overset{\mathrm{14}} {\sum}}\:^{\mathrm{14}} {C}_{{i}} \left({x}^{\mathrm{2}} \right)^{{i}} \left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\mathrm{14}−{i}} \\ $$$$\mathrm{middlw}\:\mathrm{term}=\:\:^{\mathrm{14}} {C}_{\mathrm{7}} \left({x}^{\mathrm{2}} \right)^{\mathrm{7}} \left(\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\mathrm{7}} =\:^{\mathrm{14}} {C}_{\mathrm{7}} {x}^{−\mathrm{7}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *