Menu Close

2-log-10-6-pi-x-7-How-much-the-x-is-




Question Number 166619 by BagusSetyoWibowo last updated on 23/Feb/22
(2/(log_(10) (6)))=(π^x /7)  How much the x is?
2log10(6)=πx7Howmuchthexis?
Answered by TheSupreme last updated on 23/Feb/22
((log_(10) (100))/(log_0 (6)))=log_6 (100)=(π^x /7)  π^x =7log_6 (100)  x=log_π (7log_6 (100))
log10(100)log0(6)=log6(100)=πx7πx=7log6(100)x=logπ(7log6(100))
Commented by BagusSetyoWibowo last updated on 24/Feb/22
Another Method  (2/(log_(10) (6)))=(π^x /7)  Cross multiply if (a/b)=(c/d)  a×d=b×c  2×7=log_(10) (6)×π^x   14=log_(10) (6)×π^x   Divide both sides by log_(10) (6)  ((14)/(log_(10) (6)))=((log_(10) (6)π^x )/(log_(10) (6)))  Switch sides  π^x =((14)/(log_(10) (6)))  Apply exponent rule  xln(π)=ln(((14)/(log_(10) (6))))  Solve  x=((ln(((14)/(log_(10) (6)))))/(ln(π)))  x=2,524518...
AnotherMethod2log10(6)=πx7Crossmultiplyifab=cda×d=b×c2×7=log10(6)×πx14=log10(6)×πxDividebothsidesbylog10(6)14log10(6)=log10(6)πxlog10(6)Switchsidesπx=14log10(6)Applyexponentrulexln(π)=ln(14log10(6))Solvex=ln(14log10(6))ln(π)x=2,524518

Leave a Reply

Your email address will not be published. Required fields are marked *