Menu Close

2-nd-part-of-Q-16214-Prove-that-r-1-s-tan-A-2-r-2-s-tan-B-2-r-3-s-tan-C-2-




Question Number 16269 by Tinkutara last updated on 20/Jun/17
2^(nd)  part of Q. 16214: Prove that  r_1  = s tan ((A/2)), r_2  = s tan ((B/2)),  r_3  = s tan ((C/2)).
$$\mathrm{2}^{\mathrm{nd}} \:\mathrm{part}\:\mathrm{of}\:\mathrm{Q}.\:\mathrm{16214}:\:\mathrm{Prove}\:\mathrm{that} \\ $$$${r}_{\mathrm{1}} \:=\:{s}\:\mathrm{tan}\:\left(\frac{{A}}{\mathrm{2}}\right),\:{r}_{\mathrm{2}} \:=\:{s}\:\mathrm{tan}\:\left(\frac{{B}}{\mathrm{2}}\right), \\ $$$${r}_{\mathrm{3}} \:=\:{s}\:\mathrm{tan}\:\left(\frac{{C}}{\mathrm{2}}\right). \\ $$
Answered by mrW1 last updated on 20/Jun/17
Commented by mrW1 last updated on 20/Jun/17
with usage of diagram above from  mr. ajfour we have  AE=AB+BD  AF=AC+CD  r_1 =AE×tan (A/2)  r_1 =AF×tan (A/2)  ⇒2r_1 =(AE+AF)×tan (A/2)  ⇒2r_1 =(AB+BC+AC)×tan (A/2)  ⇒2r_1 =2s×tan (A/2)  ⇒tan (A/2)=(r_1 /s)  similarly  ⇒tan (B/2)=(r_2 /s)  ⇒tan (C/2)=(r_3 /s)
$$\mathrm{with}\:\mathrm{usage}\:\mathrm{of}\:\mathrm{diagram}\:\mathrm{above}\:\mathrm{from} \\ $$$$\mathrm{mr}.\:\mathrm{ajfour}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{AE}=\mathrm{AB}+\mathrm{BD} \\ $$$$\mathrm{AF}=\mathrm{AC}+\mathrm{CD} \\ $$$$\mathrm{r}_{\mathrm{1}} =\mathrm{AE}×\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\mathrm{r}_{\mathrm{1}} =\mathrm{AF}×\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2r}_{\mathrm{1}} =\left(\mathrm{AE}+\mathrm{AF}\right)×\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2r}_{\mathrm{1}} =\left(\mathrm{AB}+\mathrm{BC}+\mathrm{AC}\right)×\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2r}_{\mathrm{1}} =\mathrm{2s}×\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}}=\frac{\mathrm{r}_{\mathrm{1}} }{\mathrm{s}} \\ $$$$\mathrm{similarly} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\mathrm{B}}{\mathrm{2}}=\frac{\mathrm{r}_{\mathrm{2}} }{\mathrm{s}} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\mathrm{C}}{\mathrm{2}}=\frac{\mathrm{r}_{\mathrm{3}} }{\mathrm{s}} \\ $$
Commented by Tinkutara last updated on 20/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *