Menu Close

2-x-1-x-1-4-dx-




Question Number 191188 by cortano12 last updated on 20/Apr/23
           ∫ (((2−x)/(1−x)))^(1/4)  dx =?
$$\:\:\:\:\:\:\:\:\:\:\:\int\:\sqrt[{\mathrm{4}}]{\frac{\mathrm{2}−\mathrm{x}}{\mathrm{1}−\mathrm{x}}}\:\mathrm{dx}\:=?\: \\ $$
Answered by mehdee42 last updated on 20/Apr/23
(((2−x)/(1−x)))^(1/4) =u⇒x=((u^4 −2)/(u^4 −1))⇒dx=((4u^3 )/((u^4 −1)^2  )) du  ⇒∫(((x−2)/(x−1)))^(1/4) dx=∫((4u^4 )/((u^4 −1)^2 ))du  this integral can be solved by dividing fractions.
$$\sqrt[{\mathrm{4}}]{\frac{\mathrm{2}−{x}}{\mathrm{1}−{x}}}={u}\Rightarrow{x}=\frac{{u}^{\mathrm{4}} −\mathrm{2}}{{u}^{\mathrm{4}} −\mathrm{1}}\Rightarrow{dx}=\frac{\mathrm{4}{u}^{\mathrm{3}} }{\left({u}^{\mathrm{4}} −\mathrm{1}\right)^{\mathrm{2}} \:}\:{du} \\ $$$$\Rightarrow\int\sqrt[{\mathrm{4}}]{\frac{{x}−\mathrm{2}}{{x}−\mathrm{1}}}{dx}=\int\frac{\mathrm{4}{u}^{\mathrm{4}} }{\left({u}^{\mathrm{4}} −\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$${this}\:{integral}\:{can}\:{be}\:{solved}\:{by}\:{dividing}\:{fractions}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *