Menu Close

2-x-2-1-x-1-x-2-dx-




Question Number 91086 by jagoll last updated on 28/Apr/20
∫ ((2−x^2 )/(1+x(√(1−x^2 )))) dx
2x21+x1x2dx
Answered by MJS last updated on 28/Apr/20
∫((2−x^2 )/(1+x(√(1−x^2 ))))dx=       the two necessary steps in one:       x=sin θ ∧ θ=2arctan t ⇒ x=((2t)/(t^2 +1))       t=((1+(√(1−x^2 )))/x) → dx=−((x^2 (√(1−x^2 )))/(1+(√(1−x^2 ))))dt=−((2(t^2 −1))/((t^2 +1)^2 ))dt  =−4∫(((t^2 −1)(t^4 +1))/((t^2 +1)^2 (t^4 +2t^3 +2t^2 −2t+1)))dt=       t^4 +2t^3 +2t^2 −2t+1=(t^2 +(1−(√3))t+2−(√3))(t^2 +(1+(√3))t+2+(√3))  =4∫(t/((t^2 +1)^2 ))dt−∫(((√3)t−1)/(t^2 +(1−(√3))t+2−(√3)))dt+∫(((√3)t+1)/(t^2 +(1+(√3))t+2+(√3)))dt=  =−(2/(t^2 +1))+((√3)/2)ln ((t^2 +(1+(√3))t+2+(√3))/(t^2 +(1−(√3))t+2−(√3))) +arctan ((1−(√3))t−1) +arctan ((1+(√3))t+1) =  =−(x^2 /(1+(√(1−x^2 ))))+((√3)/2)ln ((x^2 −2+(√(3(1−x^2 ))))/(x^2 −(√3)x+1)) +arctan (((1−(√3))(1+(√(1−x^2 )))−x)/x) +arctan (((1+(√3))(1+(√(1−x^2 )))−x)/x) +C  I found no easier path  I hope I made no typos...
2x21+x1x2dx=thetwonecessarystepsinone:x=sinθθ=2arctantx=2tt2+1t=1+1x2xdx=x21x21+1x2dt=2(t21)(t2+1)2dt=4(t21)(t4+1)(t2+1)2(t4+2t3+2t22t+1)dt=t4+2t3+2t22t+1=(t2+(13)t+23)(t2+(1+3)t+2+3)=4t(t2+1)2dt3t1t2+(13)t+23dt+3t+1t2+(1+3)t+2+3dt==2t2+1+32lnt2+(1+3)t+2+3t2+(13)t+23+arctan((13)t1)+arctan((1+3)t+1)==x21+1x2+32lnx22+3(1x2)x23x+1+arctan(13)(1+1x2)xx+arctan(1+3)(1+1x2)xx+CIfoundnoeasierpathIhopeImadenotypos

Leave a Reply

Your email address will not be published. Required fields are marked *