Menu Close

2-x-2-2-x-2-4-x-4-dx-




Question Number 147749 by cesarL last updated on 23/Jul/21
∫(((√(2−x^2 ))+(√(2+x^2 )))/( (√(4−x^4 ))))dx
2x2+2+x24x4dx
Answered by mathmax by abdo last updated on 23/Jul/21
I=∫ ((√(2−x^2 ))/( (√(2−x^2 ))(√(2+x^2 ))))dx+∫ ((√(2+x^2 ))/( (√(2−x^2 ))(√(2+x^2 ))))dx  =∫  (dx/( (√(2+x^2 ))))dx +∫  (dx/( (√(2−x^2 ))))dx  we have  ∫  (dx/( (√(2+x^2 ))))dx=_(x=(√2)t)   ∫  (((√2)dt)/( (√2).(√(1+t^2 ))))dt =log(t+(√(1+t^2 )))+c_0   =log((x/( (√2)))+(√(1+(x^2 /2))))+c_0 =log(x+(√(2+x^2 )))+k_0   ∫  (dx/( (√(2−x^2 ))))=_(x=(√2)t)   ∫  (((√2)dt)/( (√2)(√(1−t^2 ))))=arcsint +c_1 =arcsin((x/( (√2))))+c_1  ⇒  I=log(x+(√(2+x^2 )))+arcsin((x/( (√2))))+C
I=2x22x22+x2dx+2+x22x22+x2dx=dx2+x2dx+dx2x2dxwehavedx2+x2dx=x=2t2dt2.1+t2dt=log(t+1+t2)+c0=log(x2+1+x22)+c0=log(x+2+x2)+k0dx2x2=x=2t2dt21t2=arcsint+c1=arcsin(x2)+c1I=log(x+2+x2)+arcsin(x2)+C

Leave a Reply

Your email address will not be published. Required fields are marked *