Menu Close

2-x-2-2-x-2-4-x-4-dx-




Question Number 147749 by cesarL last updated on 23/Jul/21
∫(((√(2−x^2 ))+(√(2+x^2 )))/( (√(4−x^4 ))))dx
$$\int\frac{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }+\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }}{\:\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}{dx} \\ $$
Answered by mathmax by abdo last updated on 23/Jul/21
I=∫ ((√(2−x^2 ))/( (√(2−x^2 ))(√(2+x^2 ))))dx+∫ ((√(2+x^2 ))/( (√(2−x^2 ))(√(2+x^2 ))))dx  =∫  (dx/( (√(2+x^2 ))))dx +∫  (dx/( (√(2−x^2 ))))dx  we have  ∫  (dx/( (√(2+x^2 ))))dx=_(x=(√2)t)   ∫  (((√2)dt)/( (√2).(√(1+t^2 ))))dt =log(t+(√(1+t^2 )))+c_0   =log((x/( (√2)))+(√(1+(x^2 /2))))+c_0 =log(x+(√(2+x^2 )))+k_0   ∫  (dx/( (√(2−x^2 ))))=_(x=(√2)t)   ∫  (((√2)dt)/( (√2)(√(1−t^2 ))))=arcsint +c_1 =arcsin((x/( (√2))))+c_1  ⇒  I=log(x+(√(2+x^2 )))+arcsin((x/( (√2))))+C
$$\mathrm{I}=\int\:\frac{\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }\sqrt{\mathrm{2}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}+\int\:\frac{\sqrt{\mathrm{2}+\mathrm{x}^{\mathrm{2}} }}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }\sqrt{\mathrm{2}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx} \\ $$$$=\int\:\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}\:+\int\:\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\int\:\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}=_{\mathrm{x}=\sqrt{\mathrm{2}}\mathrm{t}} \:\:\int\:\:\frac{\sqrt{\mathrm{2}}\mathrm{dt}}{\:\sqrt{\mathrm{2}}.\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\mathrm{dt}\:=\mathrm{log}\left(\mathrm{t}+\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)+\mathrm{c}_{\mathrm{0}} \\ $$$$=\mathrm{log}\left(\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}+\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}}\right)+\mathrm{c}_{\mathrm{0}} =\mathrm{log}\left(\mathrm{x}+\sqrt{\mathrm{2}+\mathrm{x}^{\mathrm{2}} }\right)+\mathrm{k}_{\mathrm{0}} \\ $$$$\int\:\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }}=_{\mathrm{x}=\sqrt{\mathrm{2}}\mathrm{t}} \:\:\int\:\:\frac{\sqrt{\mathrm{2}}\mathrm{dt}}{\:\sqrt{\mathrm{2}}\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }}=\mathrm{arcsint}\:+\mathrm{c}_{\mathrm{1}} =\mathrm{arcsin}\left(\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{c}_{\mathrm{1}} \:\Rightarrow \\ $$$$\mathrm{I}=\mathrm{log}\left(\mathrm{x}+\sqrt{\mathrm{2}+\mathrm{x}^{\mathrm{2}} }\right)+\mathrm{arcsin}\left(\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *