Menu Close

2-x-2-3x-16-solve-for-x-




Question Number 90762 by Ar Brandon last updated on 25/Apr/20
2^x +2^(3x) =16  solve for x
$$\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{\mathrm{3x}} =\mathrm{16} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x} \\ $$
Answered by MJS last updated on 25/Apr/20
2^x =t  t^3 +t−16=0  D=(((1)^3 )/(27))+(((−16)^2 )/4)>0 ⇒ Cardano  t_1 =((8+((√(5187))/9)))^(1/3) −((−8+((√(5187))/9)))^(1/3)   ⇒ x=(1/(ln 2))ln (((8+((√(5187))/9)))^(1/3) −((−8+((√(5187))/9)))^(1/3) )  t_1 ≈2.38769  x≈1.25561
$$\mathrm{2}^{{x}} ={t} \\ $$$${t}^{\mathrm{3}} +{t}−\mathrm{16}=\mathrm{0} \\ $$$${D}=\frac{\left(\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{27}}+\frac{\left(−\mathrm{16}\right)^{\mathrm{2}} }{\mathrm{4}}>\mathrm{0}\:\Rightarrow\:\mathrm{Cardano} \\ $$$${t}_{\mathrm{1}} =\sqrt[{\mathrm{3}}]{\mathrm{8}+\frac{\sqrt{\mathrm{5187}}}{\mathrm{9}}}−\sqrt[{\mathrm{3}}]{−\mathrm{8}+\frac{\sqrt{\mathrm{5187}}}{\mathrm{9}}} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}\mathrm{ln}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{8}+\frac{\sqrt{\mathrm{5187}}}{\mathrm{9}}}−\sqrt[{\mathrm{3}}]{−\mathrm{8}+\frac{\sqrt{\mathrm{5187}}}{\mathrm{9}}}\right) \\ $$$${t}_{\mathrm{1}} \approx\mathrm{2}.\mathrm{38769} \\ $$$${x}\approx\mathrm{1}.\mathrm{25561} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *