Menu Close

2-x-2-dx-




Question Number 146678 by mathdanisur last updated on 14/Jul/21
∫ (√(2 + x^2 )) dx = ?
2+x2dx=?
Answered by Ar Brandon last updated on 14/Jul/21
I=∫(√(2+x^2 ))dx    =2∫(√(1+sinh^2 θ))∙coshθdθ    =2∫cosh^2 θ=∫(cosh2θ+1)dθ    =((sinh2θ)/2)+θ=sinhθcoshθ+θ+C    =(x/( 2))(√(2+x^2 ))+argsinh((x/2))+C
I=2+x2dx=21+sinh2θcoshθdθ=2cosh2θ=(cosh2θ+1)dθ=sinh2θ2+θ=sinhθcoshθ+θ+C=x22+x2+argsinh(x2)+C
Commented by mathdanisur last updated on 15/Jul/21
thankyou Ser cool
thankyouSercool
Answered by mathmax by abdo last updated on 14/Jul/21
I=∫(√(2+x^2 ))dx changement x=(√2)sht give  I=∫ (√2)cht((√2))cht dt =∫ 2ch^2 t dt =∫ (1+ch(2t))dt  =t+(1/2)sh(2t) =t +sht cht  but t=argsh((x/( (√2))))=log((x/( (√2)))+(√(1+(x^2 /2))))  ⇒I=log((x/( (√2)))+(√(1+(x^2 /2)))) +(x/( (√2)))(√(1+(x^2 /2))) +c  =log(x+(√(2+x^2 ))) +(x/2)(√(2+x^2 )) +C
I=2+x2dxchangementx=2shtgiveI=2cht(2)chtdt=2ch2tdt=(1+ch(2t))dt=t+12sh(2t)=t+shtchtbutt=argsh(x2)=log(x2+1+x22)I=log(x2+1+x22)+x21+x22+c=log(x+2+x2)+x22+x2+C
Commented by mathdanisur last updated on 15/Jul/21
thankyou Ser cool
thankyouSercool

Leave a Reply

Your email address will not be published. Required fields are marked *