Menu Close

2-x-3-4-dx-




Question Number 86094 by M±th+et£s last updated on 27/Mar/20
2∫(√(x^3 +4)) dx
$$\mathrm{2}\int\sqrt{{x}^{\mathrm{3}} +\mathrm{4}}\:{dx} \\ $$
Commented by redmiiuser last updated on 27/Mar/20
sir please check my   answer
$${sir}\:{please}\:{check}\:{my}\: \\ $$$${answer} \\ $$
Answered by redmiiuser last updated on 27/Mar/20
Commented by M±th+et£s last updated on 27/Mar/20
thank you sir but can you show your work
$${thank}\:{you}\:{sir}\:{but}\:{can}\:{you}\:{show}\:{your}\:{work} \\ $$$$ \\ $$
Commented by redmiiuser last updated on 28/Mar/20
is my answer correct
$${is}\:{my}\:{answer}\:{correct} \\ $$
Commented by M±th+et£s last updated on 28/Mar/20
its correct sir
$${its}\:{correct}\:{sir} \\ $$
Commented by redmiiuser last updated on 28/Mar/20
thanks sir
$${thanks}\:{sir} \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 28/Mar/20
sir can you show me how did you get that  and thank you
$${sir}\:{can}\:{you}\:{show}\:{me}\:{how}\:{did}\:{you}\:{get}\:{that} \\ $$$${and}\:{thank}\:{you} \\ $$
Commented by redmiiuser last updated on 28/Mar/20
the obvious method  to do this is binomial  theorem.  at first assume x^3 =4tan^2 θ  and do integration  until you reach   ((32)/(3.4^((2/3)) ))∫((sec^3 θ.dθ)/(tan^((1/3)) θ))  then assume u=tan θ  further we get  ((32)/(3.4^((2/3)) ))∫(((1+u^2 )^((1/2)) du)/u^((1/3)) )  now   expand (1+u^2 )^((−1/2))   and integrate and rest  is upto you
$${the}\:{obvious}\:{method} \\ $$$${to}\:{do}\:{this}\:{is}\:{binomial} \\ $$$${theorem}. \\ $$$${at}\:{first}\:{assume}\:{x}^{\mathrm{3}} =\mathrm{4tan}\:^{\mathrm{2}} \theta \\ $$$${and}\:{do}\:{integration} \\ $$$${until}\:{you}\:{reach}\: \\ $$$$\frac{\mathrm{32}}{\mathrm{3}.\mathrm{4}^{\left(\mathrm{2}/\mathrm{3}\right)} }\int\frac{\mathrm{sec}\:^{\mathrm{3}} \theta.{d}\theta}{\mathrm{tan}\:^{\left(\mathrm{1}/\mathrm{3}\right)} \theta} \\ $$$${then}\:{assume}\:{u}=\mathrm{tan}\:\theta \\ $$$${further}\:{we}\:{get} \\ $$$$\frac{\mathrm{32}}{\mathrm{3}.\mathrm{4}^{\left(\mathrm{2}/\mathrm{3}\right)} }\int\frac{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\left(\mathrm{1}/\mathrm{2}\right)} {du}}{{u}^{\left(\mathrm{1}/\mathrm{3}\right)} } \\ $$$${now}\: \\ $$$${expand}\:\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\left(−\mathrm{1}/\mathrm{2}\right)} \\ $$$${and}\:{integrate}\:{and}\:{rest} \\ $$$${is}\:{upto}\:{you} \\ $$
Commented by redmiiuser last updated on 28/Mar/20
a request to you  to pls check    question no.  86454.
$${a}\:{request}\:{to}\:{you}\:\:{to}\:{pls}\:{check}\:\: \\ $$$${question}\:{no}. \\ $$$$\mathrm{86454}. \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *