Menu Close

2-x-3-y-6-z-Find-the-value-of-2017-x-2017-y-2017-z-2017-




Question Number 21470 by Joel577 last updated on 24/Sep/17
2^x  = 3^y  = 6^(−z)   Find the value of   (((2017)/x) + ((2017)/y) + ((2017)/z))^(2017)
$$\mathrm{2}^{{x}} \:=\:\mathrm{3}^{{y}} \:=\:\mathrm{6}^{−{z}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\left(\frac{\mathrm{2017}}{{x}}\:+\:\frac{\mathrm{2017}}{{y}}\:+\:\frac{\mathrm{2017}}{{z}}\right)^{\mathrm{2017}} \\ $$
Commented by Joel577 last updated on 24/Sep/17
2^x  = 3^y  = 6^(−z)  = k             (k ≠ 0)  2^x  = k  → x =^2 log k  3^y  = k  → y =^3 log k  6^(−z)  = k  →  −z =^6 log k  →  z =^6 log k^(−1)     (((^2 log 2^(2017) )/(^2 log k)) + ((^3 log 3^(2017) )/(^3 log k)) + ((^6 log 6^(2017) )/(^6 log k^(−1) )))^(2017)    = (^k log 2^(2017)  +^k log 3^(2017)  +^k^(−1)  log 6^(2017) )^(2017)   = (^k log 2^(2017)  +^k log 3^(2017)  −^k log 6^(2017) )^(2017)   = [^k log (((2^(2017) .3^(2017) )/6^(2017) ))]^(2017)   = (^k log 1)^(2017)   = 0
$$\mathrm{2}^{{x}} \:=\:\mathrm{3}^{{y}} \:=\:\mathrm{6}^{−{z}} \:=\:{k}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({k}\:\neq\:\mathrm{0}\right) \\ $$$$\mathrm{2}^{{x}} \:=\:{k}\:\:\rightarrow\:{x}\:=\:^{\mathrm{2}} \mathrm{log}\:{k} \\ $$$$\mathrm{3}^{{y}} \:=\:{k}\:\:\rightarrow\:{y}\:=\:^{\mathrm{3}} \mathrm{log}\:{k} \\ $$$$\mathrm{6}^{−{z}} \:=\:{k}\:\:\rightarrow\:\:−{z}\:=\:^{\mathrm{6}} \mathrm{log}\:{k}\:\:\rightarrow\:\:{z}\:=\:^{\mathrm{6}} \mathrm{log}\:{k}^{−\mathrm{1}} \\ $$$$ \\ $$$$\left(\frac{\:^{\mathrm{2}} \mathrm{log}\:\mathrm{2}^{\mathrm{2017}} }{\:^{\mathrm{2}} \mathrm{log}\:{k}}\:+\:\frac{\:^{\mathrm{3}} \mathrm{log}\:\mathrm{3}^{\mathrm{2017}} }{\:^{\mathrm{3}} \mathrm{log}\:{k}}\:+\:\frac{\:^{\mathrm{6}} \mathrm{log}\:\mathrm{6}^{\mathrm{2017}} }{\:^{\mathrm{6}} \mathrm{log}\:{k}^{−\mathrm{1}} }\right)^{\mathrm{2017}} \: \\ $$$$=\:\left(\:^{{k}} \mathrm{log}\:\mathrm{2}^{\mathrm{2017}} \:+\:^{{k}} \mathrm{log}\:\mathrm{3}^{\mathrm{2017}} \:+\:^{{k}^{−\mathrm{1}} } \mathrm{log}\:\mathrm{6}^{\mathrm{2017}} \right)^{\mathrm{2017}} \\ $$$$=\:\left(\:^{{k}} \mathrm{log}\:\mathrm{2}^{\mathrm{2017}} \:+\:^{{k}} \mathrm{log}\:\mathrm{3}^{\mathrm{2017}} \:−\:^{{k}} \mathrm{log}\:\mathrm{6}^{\mathrm{2017}} \right)^{\mathrm{2017}} \\ $$$$=\:\left[\:^{{k}} \mathrm{log}\:\left(\frac{\mathrm{2}^{\mathrm{2017}} .\mathrm{3}^{\mathrm{2017}} }{\mathrm{6}^{\mathrm{2017}} }\right)\right]^{\mathrm{2017}} \\ $$$$=\:\left(^{{k}} \mathrm{log}\:\mathrm{1}\right)^{\mathrm{2017}} \\ $$$$=\:\mathrm{0} \\ $$
Answered by $@ty@m last updated on 24/Sep/17
2^x  = 3^y  = 6^(−z) =k, say  ⇒k^(1/x) =2, k^(1/y) =3 & k^((−1)/z) =6  ∵2×3=6  ∴k^(1/x) ×k^(1/y) =k^((−1)/z)   (1/x)+(1/y)=((−1)/z)  (1/x)+(1/y)+(1/z)=0  ((2017)/x)+((2017)/y)+((2017)/z)=0
$$\mathrm{2}^{{x}} \:=\:\mathrm{3}^{{y}} \:=\:\mathrm{6}^{−{z}} ={k},\:{say} \\ $$$$\Rightarrow{k}^{\frac{\mathrm{1}}{{x}}} =\mathrm{2},\:{k}^{\frac{\mathrm{1}}{{y}}} =\mathrm{3}\:\&\:{k}^{\frac{−\mathrm{1}}{{z}}} =\mathrm{6} \\ $$$$\because\mathrm{2}×\mathrm{3}=\mathrm{6} \\ $$$$\therefore{k}^{\frac{\mathrm{1}}{{x}}} ×{k}^{\frac{\mathrm{1}}{{y}}} ={k}^{\frac{−\mathrm{1}}{{z}}} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{−\mathrm{1}}{{z}} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\mathrm{0} \\ $$$$\frac{\mathrm{2017}}{{x}}+\frac{\mathrm{2017}}{{y}}+\frac{\mathrm{2017}}{{z}}=\mathrm{0} \\ $$$$ \\ $$
Commented by Joel577 last updated on 26/Sep/17
thank you for the shortcut
$${thank}\:{you}\:{for}\:{the}\:{shortcut} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *