Menu Close

2-x-4x-




Question Number 112521 by Khalmohmmad last updated on 08/Sep/20
2^x =4x
$$\mathrm{2}^{\mathrm{x}} =\mathrm{4x}\:\:\:\:\:\: \\ $$
Commented by Khalmohmmad last updated on 08/Sep/20
Thank you Myborder
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Myborder} \\ $$
Commented by Dwaipayan Shikari last updated on 08/Sep/20
4
$$\mathrm{4} \\ $$
Commented by Dwaipayan Shikari last updated on 08/Sep/20
2^x =4x  e^(xlog2) =4x  e^(−xlog(2)) =(1/(4x))  −xlog2e^(−xlog(2)) =−((log2)/4)  −xlog(2)=W_0 (−((log2)/4))  x=((W_0 (−((log2)/4)))/(−log2))  x=4,   0.3099..
$$\mathrm{2}^{{x}} =\mathrm{4}{x} \\ $$$${e}^{{xlog}\mathrm{2}} =\mathrm{4}{x} \\ $$$${e}^{−{xlog}\left(\mathrm{2}\right)} =\frac{\mathrm{1}}{\mathrm{4}{x}} \\ $$$$−{xlog}\mathrm{2}{e}^{−{xlog}\left(\mathrm{2}\right)} =−\frac{{log}\mathrm{2}}{\mathrm{4}} \\ $$$$−{xlog}\left(\mathrm{2}\right)={W}_{\mathrm{0}} \left(−\frac{{log}\mathrm{2}}{\mathrm{4}}\right) \\ $$$${x}=\frac{{W}_{\mathrm{0}} \left(−\frac{{log}\mathrm{2}}{\mathrm{4}}\right)}{−{log}\mathrm{2}} \\ $$$${x}=\mathrm{4},\:\:\:\mathrm{0}.\mathrm{3099}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *