Menu Close

2-x-e-x-dx-




Question Number 188036 by Michaelfaraday last updated on 25/Feb/23
∫2^x e^x dx
$$\int\mathrm{2}^{{x}} {e}^{{x}} {dx} \\ $$
Answered by MJS_new last updated on 25/Feb/23
∫2^x e^x dx=∫e^((1+ln 2)x) dx=(e^((1+ln 2)x) /(1+ln 2))=  =((2^x e^x )/(1+ln 2))+C
$$\int\mathrm{2}^{{x}} \mathrm{e}^{{x}} {dx}=\int\mathrm{e}^{\left(\mathrm{1}+\mathrm{ln}\:\mathrm{2}\right){x}} {dx}=\frac{\mathrm{e}^{\left(\mathrm{1}+\mathrm{ln}\:\mathrm{2}\right){x}} }{\mathrm{1}+\mathrm{ln}\:\mathrm{2}}= \\ $$$$=\frac{\mathrm{2}^{{x}} \mathrm{e}^{{x}} }{\mathrm{1}+\mathrm{ln}\:\mathrm{2}}+{C} \\ $$
Commented by Michaelfaraday last updated on 01/Mar/23
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *