Menu Close

2-x-x-1-x-2-dx-




Question Number 144985 by imjagoll last updated on 01/Jul/21
 ∫ (((2+(√x)))/((x+1+(√x))^2 )) dx =?
(2+x)(x+1+x)2dx=?
Answered by mathmax by abdo last updated on 01/Jul/21
f(a)=∫   ((2+(√x))/(x+a+(√x)))   with a>(1/4) ⇒f^′ (a)=−∫  ((2+(√x))/((x+a+(√x))^2 ))dx ⇒  −f^′ (1)=∫  ((2+(√x))/((x+1+(√x))^2 ))dx  we have  f(a)=_((√x)=t)    ∫   ((2+t)/(t^2  +a+t))(2t)dt =∫  ((2t+t^2 )/(t^2  +t+a))dt  =∫ ((t^2 +t+a +t−a)/(t^2  +t+a))dt =t +∫  ((t−a)/(t^2  +t+a))dt  t^2 +t+a=0 ⇒Δ=1−4a <0 because a>(1/4) ⇒  ∫  ((t−a)/(t^2  +t+a))dt =(1/2)∫  ((2t+1−2a−1)/(t^2  +t+a))dt  =(1/2)∫ ((2t+1)/(t^2  +t+a))dt−((2a+1)/2)∫  (dt/(t^2  +t+a))  =(1/2)log(t^2  +t+a)−((2a+1)/2)I  I=∫ (dt/(t^2  +2(t/2)+(1/4)+a−(1/4)))=∫ (dt/((t+(1/2))^2 +((4a−1)/4)))  =_(t+(1/2)=((√(4a−1))/2)y)     ∫  (1/((((4a−1)/4))(1+y^2 )))((√(4a−1))/2)dy  =((2(√(4a−1)))/(4a−1)) arctany +c=(2/( (√(4a−1))))arctan(((2t+1)/( (√(4a−1)))))+c⇒  ∫ ((t−a)/(t^2  +t+a))dt=(1/2)log(t^2  +t+a)−((2a+1)/( (√(4a−1))))arctan(((2t+1)/( (√(4a−1))))) +c ⇒  f(a)=(√x)+(1/2)log(x+(√x)+a)−((2a+1)/( (√(4a−1))))arctan(((2(√x)+1)/( (√(4a−1))))) +c ⇒  f^′ (a)=(1/(2(x+(√x)+a)))−(((2(√(4a−1))−(2a+1)(2/( (√(4a−1)))))/(4a−1)))arctan(((2(√x)+1)/( (√(4a−1)))))  −(((2a+1)/( (√(4a−1)))))×(((2(√x)+1)((1/( (√(4a−1)))))^′ )/(1+(((2(√x)+1)/( (√(4a−1)))))^2 ))  =(1/(2(x+(√x)+a)))−((2(4a−1)−2(2a+1))/((4a−1)(√(4a−1))))arctan(((2(√x)+1)/( (√(4a−1)))))  −((2a+1)/( (√(4a−1))))×(((2(√x)+1)(−(2/((4a−1)(√(4a−1))))))/(1+(((2(√x)+1)/( (√(4a−1)))))^2 )) ⇒  f^′ (a)=(1/(2(x+(√x)+a)))−((4a−4)/((4a−1)(√(4a−1))))arctan(((2(√x)+1)/( (√(4a−1)))))  +((2(2a+1)(2(√x)+1))/((4a−1)^2 (1+(((2(√x)+1)/( (√(4a−1)))))^2 ))) ⇒  −f^′ (1)=−(1/(2(x+(√x)+1))) +((6(2(√x)+1))/(9(1+(((2(√x)+1)/( (√3))))^2 )) +K
f(a)=2+xx+a+xwitha>14f(a)=2+x(x+a+x)2dxf(1)=2+x(x+1+x)2dxwehavef(a)=x=t2+tt2+a+t(2t)dt=2t+t2t2+t+adt=t2+t+a+tat2+t+adt=t+tat2+t+adtt2+t+a=0Δ=14a<0becausea>14tat2+t+adt=122t+12a1t2+t+adt=122t+1t2+t+adt2a+12dtt2+t+a=12log(t2+t+a)2a+12II=dtt2+2t2+14+a14=dt(t+12)2+4a14=t+12=4a12y1(4a14)(1+y2)4a12dy=24a14a1arctany+c=24a1arctan(2t+14a1)+ctat2+t+adt=12log(t2+t+a)2a+14a1arctan(2t+14a1)+cf(a)=x+12log(x+x+a)2a+14a1arctan(2x+14a1)+cf(a)=12(x+x+a)(24a1(2a+1)24a14a1)arctan(2x+14a1)(2a+14a1)×(2x+1)(14a1)1+(2x+14a1)2=12(x+x+a)2(4a1)2(2a+1)(4a1)4a1arctan(2x+14a1)2a+14a1×(2x+1)(2(4a1)4a1)1+(2x+14a1)2f(a)=12(x+x+a)4a4(4a1)4a1arctan(2x+14a1)+2(2a+1)(2x+1)(4a1)2(1+(2x+14a1)2)f(1)=12(x+x+1)+6(2x+1)9(1+(2x+13)2+K

Leave a Reply

Your email address will not be published. Required fields are marked *