2-x-x-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 144985 by imjagoll last updated on 01/Jul/21 ∫(2+x)(x+1+x)2dx=? Answered by mathmax by abdo last updated on 01/Jul/21 f(a)=∫2+xx+a+xwitha>14⇒f′(a)=−∫2+x(x+a+x)2dx⇒−f′(1)=∫2+x(x+1+x)2dxwehavef(a)=x=t∫2+tt2+a+t(2t)dt=∫2t+t2t2+t+adt=∫t2+t+a+t−at2+t+adt=t+∫t−at2+t+adtt2+t+a=0⇒Δ=1−4a<0becausea>14⇒∫t−at2+t+adt=12∫2t+1−2a−1t2+t+adt=12∫2t+1t2+t+adt−2a+12∫dtt2+t+a=12log(t2+t+a)−2a+12II=∫dtt2+2t2+14+a−14=∫dt(t+12)2+4a−14=t+12=4a−12y∫1(4a−14)(1+y2)4a−12dy=24a−14a−1arctany+c=24a−1arctan(2t+14a−1)+c⇒∫t−at2+t+adt=12log(t2+t+a)−2a+14a−1arctan(2t+14a−1)+c⇒f(a)=x+12log(x+x+a)−2a+14a−1arctan(2x+14a−1)+c⇒f′(a)=12(x+x+a)−(24a−1−(2a+1)24a−14a−1)arctan(2x+14a−1)−(2a+14a−1)×(2x+1)(14a−1)′1+(2x+14a−1)2=12(x+x+a)−2(4a−1)−2(2a+1)(4a−1)4a−1arctan(2x+14a−1)−2a+14a−1×(2x+1)(−2(4a−1)4a−1)1+(2x+14a−1)2⇒f′(a)=12(x+x+a)−4a−4(4a−1)4a−1arctan(2x+14a−1)+2(2a+1)(2x+1)(4a−1)2(1+(2x+14a−1)2)⇒−f′(1)=−12(x+x+1)+6(2x+1)9(1+(2x+13)2+K Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: exercise-Let-a-and-b-be-natural-integers-such-that-0-lt-a-lt-b-1-Show-that-if-a-divides-b-then-for-any-naturel-number-n-n-a-1-divides-n-b-1-2-For-any-non-zero-naturel-number-n-prove-that-tNext Next post: lcm-2a-3a-lcm-45-100-a- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.