Menu Close

2-x-x-2-hence-x-2-prove-




Question Number 25787 by ibraheem160 last updated on 14/Dec/17
2^x =x^(2 ) ,hence x=2 . prove
2x=x2,hencex=2.prove
Commented by mrW1 last updated on 14/Dec/17
It′s not true, Sir.  If 2^x =x^2 ,then x=2 or x=4 or x=−0.77.
Itsnottrue,Sir.If2x=x2,thenx=2orx=4orx=0.77.
Commented by mrW1 last updated on 15/Dec/17
solution of 2^x =x^2 :    if x>0:  2^(x/2) =x  e^((xln 2)/2) =x  1=xe^(−((xln 2)/2))   −((ln 2)/2)=(−((xln 2)/2))×e^(−((xln 2)/2))   ⇒−((xln 2)/2)=W(−((ln 2)/2))  ⇒x=−((W(−((ln 2)/2)))/((ln 2)/2))=−((W(−ln (√2)))/(ln (√2)))  if x<0:  2^(x/2) =−x  e^((xln 2)/2) =−x  1=−xe^(−((xln 2)/2))   ((ln 2)/2)=(−((xln 2)/2))×e^(−((xln 2)/2))   ⇒−((xln 2)/2)=W(((ln 2)/2))  ⇒x=−((W(−((ln 2)/2)))/((ln 2)/2))=−((W(ln (√2)))/(ln (√2)))  all together:  ⇒x=−((W(±ln (√2)))/(ln (√2)))  = { ((−((0.2657)/(0.3466))=−0.7666)),((−((−0.6932)/(0.3466))=2)),((−((1.3864)/(0.3466))=4)) :}    in general the solution of  a^x =x^n   is x=−((W(−((ln a)/n)))/((ln a)/n))  or x=−((W(±((ln a)/n)))/((ln a)/n)) if n is even
solutionof2x=x2:ifx>0:2x2=xexln22=x1=xexln22ln22=(xln22)×exln22xln22=W(ln22)x=W(ln22)ln22=W(ln2)ln2ifx<0:2x2=xexln22=x1=xexln22ln22=(xln22)×exln22xln22=W(ln22)x=W(ln22)ln22=W(ln2)ln2alltogether:x=W(±ln2)ln2={0.26570.3466=0.76660.69320.3466=21.38640.3466=4ingeneralthesolutionofax=xnisx=W(lnan)lnanorx=W(±lnan)lnanifniseven

Leave a Reply

Your email address will not be published. Required fields are marked *