Menu Close

2-x-y-9-1-x-2-y-3-2-solve-the-simultaneous-equation-




Question Number 27507 by NECx last updated on 07/Jan/18
2(√(x ))+y=9....(1)  x+ 2(√y)=3....(2)    solve the simultaneous equation
2x+y=9.(1)x+2y=3.(2)solvethesimultaneousequation
Commented by Rasheed.Sindhi last updated on 08/Jan/18
(1)+(2):   x+y+2((√x)+(√y))=12.....(3)  (1)−(2):   −(x−y)+2((√x)−(√y))=6...(4)  Let (√x)+(√y)=u &  (√x)−(√y)=v  (a+b)^2 −(a−b)^2 =4ab   u^2 −v^2 =4(√(xy))  ^• (√(xy))=((u^2 −v^2 )/4)       ((√x)+(√y))^2 =u^2        x+y+2(√(xy))=u^2      ^•  x+y=u^2 −2(((u^2 −v^2 )/4))                =((u^2 +v^2 )/2)    (a−b)^2 =(a+b)^2 −4ab       ^•  (x−y)^2 =(((u^2 +v^2 )/2))^2 −4(((u^2 −v^2 )/4))^2                         =(((u^2 +v^2 )^2 )/4)−(((u^2 −v^2 )^2 )/4)             =((u^4 +2u^2 v^2 +v^4 −u^4 +2u^2 v^2 −v^4 )/4)          (x−y)^2 =u^2 v^2             x−y=±uv  (3):x+y+2((√x)+(√y))=12          ((u^2 +v^2 )/2)+2u=12            u^2 +4u+v^2 =24.......(5)  (4):−(x−y)+2((√x)−(√y))=6          −(±uv)+2v=6            ∓uv+2v=6             v=(6/(∓u+2))   (5):    u^2 +4u+((6/(∓u+2)))^2 =24   (5):    u(u+4)+((36)/((∓u+2)^2 ))=24             u(u+4)(∓u+2)^2 +36=24(∓u+2)^2   Continue
(1)+(2):x+y+2(x+y)=12..(3)(1)(2):(xy)+2(xy)=6(4)Letx+y=u&xy=v(a+b)2(ab)2=4abu2v2=4xyxy=u2v24(x+y)2=u2x+y+2xy=u2x+y=u22(u2v24)=u2+v22(ab)2=(a+b)24ab(xy)2=(u2+v22)24(u2v24)2=(u2+v2)24(u2v2)24=u4+2u2v2+v4u4+2u2v2v44(xy)2=u2v2xy=±uv(3):x+y+2(x+y)=12u2+v22+2u=12u2+4u+v2=24.(5)(4):(xy)+2(xy)=6(±uv)+2v=6uv+2v=6v=6u+2(5):u2+4u+(6u+2)2=24(5):u(u+4)+36(u+2)2=24u(u+4)(u+2)2+36=24(u+2)2Continue
Commented by prakash jain last updated on 08/Jan/18
2(√x)+y=9  y_1 =9−2(√x)   x+2(√y)=3  2(√y)=3−x  for real y,x≤3  y_2 =(1/4)(3−x)^2   u=y_1 −y_2 =9−2(√x)−(1/4)(3−x)^2   for real solution x≤3  x≤3⇒9−2(√x)≥9−2(√3)>5  (1/4)(3−x)^2 ≤(9/4)  u≥5−(9/4)>0⇒no real solution
2x+y=9y1=92xx+2y=32y=3xforrealy,x3y2=14(3x)2u=y1y2=92x14(3x)2forrealsolutionx3x392x923>514(3x)294u594>0norealsolution
Commented by Rasheed.Sindhi last updated on 08/Jan/18
New way for me to attack such  problem!
Newwayformetoattacksuchproblem!
Commented by prakash jain last updated on 08/Jan/18
Actually finding the complex solutions is tough.
Answered by jota@ last updated on 09/Jan/18
there is not a real solution.
thereisnotarealsolution.

Leave a Reply

Your email address will not be published. Required fields are marked *