Menu Close

20-students-are-numbered-with-the-numbers-from-1-to-20-10-students-are-randomly-selected-what-is-the-probability-that-the-sum-of-their-numbers-is-exactly-100-




Question Number 179699 by mr W last updated on 01/Nov/22
20 students are numbered with the  numbers from 1 to 20. 10 students are  randomly selected. what is the  probability that the sum of their  numbers is exactly 100?
$$\mathrm{20}\:{students}\:{are}\:{numbered}\:{with}\:{the} \\ $$$${numbers}\:{from}\:\mathrm{1}\:{to}\:\mathrm{20}.\:\mathrm{10}\:{students}\:{are} \\ $$$${randomly}\:{selected}.\:{what}\:{is}\:{the} \\ $$$${probability}\:{that}\:{the}\:{sum}\:{of}\:{their} \\ $$$${numbers}\:{is}\:{exactly}\:\mathrm{100}? \\ $$
Commented by Rasheed.Sindhi last updated on 01/Nov/22
■∣■∣■∣■∣■∣■∣■∣■∣■∣■∙∙∙100■′s & 99∣′s  Now we′ve to select 9 bars(divisions)  (or we′ve to put 9 divisions(bars) )  in a particular way which fulfills your  restrictions...  I remember this way or some type like  this which was introduced by sir  prakash jain/mr W sir...  perhaps this method helps in such  questions...although I′m not sure.
$$\blacksquare\mid\blacksquare\mid\blacksquare\mid\blacksquare\mid\blacksquare\mid\blacksquare\mid\blacksquare\mid\blacksquare\mid\blacksquare\mid\blacksquare\centerdot\centerdot\centerdot\mathrm{100}\blacksquare'\boldsymbol{\mathrm{s}}\:\&\:\mathrm{99}\mid'\boldsymbol{\mathrm{s}} \\ $$$$\mathrm{Now}\:\mathrm{we}'\mathrm{ve}\:\mathrm{to}\:\mathrm{select}\:\mathrm{9}\:\mathrm{bars}\left(\mathrm{divisions}\right) \\ $$$$\left(\mathrm{or}\:\mathrm{we}'\mathrm{ve}\:\mathrm{to}\:\mathrm{put}\:\mathrm{9}\:\mathrm{divisions}\left(\mathrm{bars}\right)\:\right) \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{way}\:\mathrm{which}\:\mathrm{fulfills}\:\mathrm{your} \\ $$$$\mathrm{restrictions}… \\ $$$$\mathrm{I}\:\mathrm{remember}\:\mathrm{this}\:\mathrm{way}\:\mathrm{or}\:\mathrm{some}\:\mathrm{type}\:\mathrm{like} \\ $$$$\mathrm{this}\:\mathrm{which}\:\mathrm{was}\:\mathrm{introduced}\:\mathrm{by}\:\mathrm{sir} \\ $$$$\boldsymbol{\mathrm{prakash}}\:\boldsymbol{\mathrm{jain}}/\boldsymbol{{mr}}\:\boldsymbol{{W}}\:{sir}… \\ $$$$\mathrm{perhaps}\:\mathrm{this}\:\mathrm{method}\:\mathrm{helps}\:\mathrm{in}\:\mathrm{such} \\ $$$$\mathrm{questions}…{although}\:{I}'{m}\:{not}\:{sure}. \\ $$$$ \\ $$
Commented by mr W last updated on 01/Nov/22
the difficulty is that the sum of the  10 numbers should be 100. with “stars  and bars” method we can not treat the  sum of the numbers.
$${the}\:{difficulty}\:{is}\:{that}\:{the}\:{sum}\:{of}\:{the} \\ $$$$\mathrm{10}\:{numbers}\:{should}\:{be}\:\mathrm{100}.\:{with}\:“{stars} \\ $$$${and}\:{bars}''\:{method}\:{we}\:{can}\:{not}\:{treat}\:{the} \\ $$$${sum}\:{of}\:{the}\:{numbers}. \\ $$
Commented by JDamian last updated on 01/Nov/22
p=((combinations suming up 100)/(all combinations)) ?
$${p}=\frac{{combinations}\:{suming}\:{up}\:\mathrm{100}}{{all}\:{combinations}}\:? \\ $$
Commented by mr W last updated on 01/Nov/22
this question is similar to Q179420.  but due to the large number 100, we  can not enumerate all combinations  which give the sum 100.
$${this}\:{question}\:{is}\:{similar}\:{to}\:{Q}\mathrm{179420}. \\ $$$${but}\:{due}\:{to}\:{the}\:{large}\:{number}\:\mathrm{100},\:{we} \\ $$$${can}\:{not}\:{enumerate}\:{all}\:{combinations} \\ $$$${which}\:{give}\:{the}\:{sum}\:\mathrm{100}. \\ $$
Commented by Rasheed.Sindhi last updated on 01/Nov/22
Sir if we put 9 bars between 100 stars  then will the sum of ten groups (made  by bars) not be 100?   Execuse me if I not get to you.
$$\boldsymbol{{Sir}}\:{if}\:{we}\:{put}\:\mathrm{9}\:{bars}\:{between}\:\mathrm{100}\:{stars} \\ $$$${then}\:{will}\:{the}\:{sum}\:{of}\:{ten}\:{groups}\:\left({made}\right. \\ $$$$\left.{by}\:{bars}\right)\:{not}\:{be}\:\mathrm{100}?\: \\ $$$${Execuse}\:{me}\:{if}\:{I}\:{not}\:{get}\:{to}\:{you}. \\ $$
Commented by mr W last updated on 01/Nov/22
this is true. but how can you relate  the 100 stars to the numbers from 1  to 20?  actually we just want to determine  how many solutions following integer  equation has:  n_1 +n_2 +...+n_(10) =100  with 1≤n_1 <n_2 <...<n_(10) ≤20
$${this}\:{is}\:{true}.\:{but}\:{how}\:{can}\:{you}\:{relate} \\ $$$${the}\:\mathrm{100}\:{stars}\:{to}\:{the}\:{numbers}\:{from}\:\mathrm{1} \\ $$$${to}\:\mathrm{20}? \\ $$$${actually}\:{we}\:{just}\:{want}\:{to}\:{determine} \\ $$$${how}\:{many}\:{solutions}\:{following}\:{integer} \\ $$$${equation}\:{has}: \\ $$$${n}_{\mathrm{1}} +{n}_{\mathrm{2}} +…+{n}_{\mathrm{10}} =\mathrm{100} \\ $$$${with}\:\mathrm{1}\leqslant{n}_{\mathrm{1}} <{n}_{\mathrm{2}} <…<{n}_{\mathrm{10}} \leqslant\mathrm{20} \\ $$
Commented by Rasheed.Sindhi last updated on 01/Nov/22
Yes sir you′re right!
$${Yes}\:{sir}\:{you}'{re}\:{right}! \\ $$
Commented by mr W last updated on 01/Nov/22
using generating function we find out  5095 ways to select 10 numbers whose  sum is 100. so the probability is  p=((5095)/C_(10) ^(20) )=((5095)/(184756))≈2.76%
$${using}\:{generating}\:{function}\:{we}\:{find}\:{out} \\ $$$$\mathrm{5095}\:{ways}\:{to}\:{select}\:\mathrm{10}\:{numbers}\:{whose} \\ $$$${sum}\:{is}\:\mathrm{100}.\:{so}\:{the}\:{probability}\:{is} \\ $$$${p}=\frac{\mathrm{5095}}{{C}_{\mathrm{10}} ^{\mathrm{20}} }=\frac{\mathrm{5095}}{\mathrm{184756}}\approx\mathrm{2}.\mathrm{76\%} \\ $$
Commented by mr W last updated on 01/Nov/22

Leave a Reply

Your email address will not be published. Required fields are marked *