Menu Close

2000-3000-vs-3000-2000-who-is-stronger-




Question Number 26143 by chantriachheang last updated on 21/Dec/17
2000^(3000)   vs 3000^(2000)      who is stronger ?
$$\mathrm{2000}^{\mathrm{3000}} \:\:\boldsymbol{{vs}}\:\mathrm{3000}^{\mathrm{2000}} \\ $$$$ \\ $$$$\:\boldsymbol{{who}}\:\boldsymbol{{is}}\:\boldsymbol{{stronger}}\:? \\ $$
Commented by Tinkutara last updated on 22/Dec/17
You can look at my question number 21781. Also this link is helpful: https://artofproblemsolving.com/community/c4h1522793
Answered by ajfour last updated on 21/Dec/17
A=2000^(3000)      B=3000^(2000)   log A=3000(3+log 2)  log B=2000(3+log 3)  log ((A/B))=3000−1000log (9/8)                  =1000(3−log (9/8)) ≫ 1  ⇒    A > B .
$${A}=\mathrm{2000}^{\mathrm{3000}} \:\:\:\:\:{B}=\mathrm{3000}^{\mathrm{2000}} \\ $$$$\mathrm{log}\:{A}=\mathrm{3000}\left(\mathrm{3}+\mathrm{log}\:\mathrm{2}\right) \\ $$$$\mathrm{log}\:{B}=\mathrm{2000}\left(\mathrm{3}+\mathrm{log}\:\mathrm{3}\right) \\ $$$$\mathrm{log}\:\left(\frac{{A}}{{B}}\right)=\mathrm{3000}−\mathrm{1000log}\:\frac{\mathrm{9}}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1000}\left(\mathrm{3}−\mathrm{log}\:\frac{\mathrm{9}}{\mathrm{8}}\right)\:\gg\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:{A}\:>\:{B}\:. \\ $$
Answered by mrW1 last updated on 22/Dec/17
((2000^(3000) )/(3000^(2000) ))=2000^(1000) ×((2000^(2000) )/(3000^(2000) ))  =2000^(1000) ×((2/3))^(2000)   =2000^(1000) ×[((2/3))^2 ]^(1000)   =2000^(1000) ×[(4/9)]^(1000)   =[2000×(4/9)]^(1000)   ≈1000^(1000) =10^(3000) =100000...00_(3000 zeros)   ⇒2000^(3000)  is much much bigger than 3000^(2000) .
$$\frac{\mathrm{2000}^{\mathrm{3000}} }{\mathrm{3000}^{\mathrm{2000}} }=\mathrm{2000}^{\mathrm{1000}} ×\frac{\mathrm{2000}^{\mathrm{2000}} }{\mathrm{3000}^{\mathrm{2000}} } \\ $$$$=\mathrm{2000}^{\mathrm{1000}} ×\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2000}} \\ $$$$=\mathrm{2000}^{\mathrm{1000}} ×\left[\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} \right]^{\mathrm{1000}} \\ $$$$=\mathrm{2000}^{\mathrm{1000}} ×\left[\frac{\mathrm{4}}{\mathrm{9}}\right]^{\mathrm{1000}} \\ $$$$=\left[\mathrm{2000}×\frac{\mathrm{4}}{\mathrm{9}}\right]^{\mathrm{1000}} \\ $$$$\approx\mathrm{1000}^{\mathrm{1000}} =\mathrm{10}^{\mathrm{3000}} =\mathrm{1}\underset{\mathrm{3000}\:{zeros}} {\mathrm{00000}…\mathrm{00}} \\ $$$$\Rightarrow\mathrm{2000}^{\mathrm{3000}} \:{is}\:{much}\:{much}\:{bigger}\:{than}\:\mathrm{3000}^{\mathrm{2000}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *