Menu Close

2005-2017-ln-x-2017-2017-ln-x-2015-2017-ln-x-2017-2017-dx-




Question Number 42366 by Joel578 last updated on 24/Aug/18
∫_(2005) ^(2017)  (((ln ∣x − 2017∣)^(2017) )/((ln ∣x − 2015∣)^(2017)  + (ln ∣x − 2017∣)^(2017) )) dx
$$\underset{\mathrm{2005}} {\overset{\mathrm{2017}} {\int}}\:\frac{\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2017}\mid\right)^{\mathrm{2017}} }{\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2015}\mid\right)^{\mathrm{2017}} \:+\:\left(\mathrm{ln}\:\mid{x}\:−\:\mathrm{2017}\mid\right)^{\mathrm{2017}} }\:{dx} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18
∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  ∫_(2015) ^(2017) (((ln∣x−2017∣)^(2017) )/((ln∣x−2015∣)^(2017) +(ln∣x−2017∣)^(2017) ))dx=I  using formula  ∫_(2015) ^(2017) (((ln∣x−2015∣)^(2017) )/((ln∣x−2017∣)^(2017) +(ln∣x−2015∣)^(2017) ))dx=I  so 2I=∫_(2015) ^(2017) 1×dx=∣x∣_(2015) ^(2017)   2I=2017−2015=2  I=(2/2)=1
$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+{b}−{x}\right){dx} \\ $$$$\int_{\mathrm{2015}} ^{\mathrm{2017}} \frac{\left({ln}\mid{x}−\mathrm{2017}\mid\right)^{\mathrm{2017}} }{\left({ln}\mid{x}−\mathrm{2015}\mid\right)^{\mathrm{2017}} +\left({ln}\mid{x}−\mathrm{2017}\mid\right)^{\mathrm{2017}} }{dx}={I} \\ $$$${using}\:{formula} \\ $$$$\int_{\mathrm{2015}} ^{\mathrm{2017}} \frac{\left({ln}\mid{x}−\mathrm{2015}\mid\right)^{\mathrm{2017}} }{\left({ln}\mid{x}−\mathrm{2017}\mid\right)^{\mathrm{2017}} +\left({ln}\mid{x}−\mathrm{2015}\mid\right)^{\mathrm{2017}} }{dx}={I} \\ $$$${so}\:\mathrm{2}{I}=\int_{\mathrm{2015}} ^{\mathrm{2017}} \mathrm{1}×{dx}=\mid{x}\mid_{\mathrm{2015}} ^{\mathrm{2017}} \\ $$$$\mathrm{2}{I}=\mathrm{2017}−\mathrm{2015}=\mathrm{2} \\ $$$${I}=\frac{\mathrm{2}}{\mathrm{2}}=\mathrm{1} \\ $$
Commented by Joel578 last updated on 25/Aug/18
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Aug/18
its ok
$${its}\:{ok} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *