Menu Close

2009-3-2016n-2013-2010-2-2016n-2013-x-mod-11-where-n-is-any-integer-0-




Question Number 192275 by York12 last updated on 13/May/23
2009^3^(2016n+2013)  +2010^2^(2016n+2013)  ≡x mod(11) where n is any integer ≥0
200932016n+2013+201022016n+2013xmod(11)wherenisanyinteger0
Answered by BaliramKumar last updated on 14/May/23
0
0
Answered by BaliramKumar last updated on 14/May/23
φ(11) = 10 ⇒ φ(10) = 4  ((2009)/(11))=7 rem.⇒(3/(10))= 3 rem. ⇒((2016n+2013)/4) = 1 rem.         ((2010)/(11))=8 rem.⇒(2/(10))= 2 rem. ⇒((2016n+2013)/4) = 1 rem.                (7^3^1  /(11))  + (8^2^1  /(11)) = ((343)/(11)) + ((64)/(11)) = (2/(11)) + ((−2)/(11)) = (0/(11)) = 0 Remainder
ϕ(11)=10ϕ(10)=4200911=7rem.310=3rem.2016n+20134=1rem.201011=8rem.210=2rem.2016n+20134=1rem.73111+82111=34311+6411=211+211=011=0Remainder
Commented by York12 last updated on 14/May/23
  2009 ≡ 7 mod  (11)   →  2009^(10)  ≡ 7^(10)  mod (11)   ∵ 11 is a prime number → we can apply fermat′s little  theorm  ∴ 7^(10)  ≡ 1 mod (11)   → 7^(10k)  ≡  1 mod (11)   where k is a  an  integer ≥ 0  2009^3^(2016n+2013)   ≡ 7^3^(2016n+2013)   mod (11)  3^(2016n+2013)   can be written as 3^(4(504n+503)+1)  → The Unit digit would be 3  ∴ 3^(2016n+2013)  ≡ 3 mod (10) → 3^(2016n+2013)   can be written as 10k  +3    7^(10k)  ≡ 1 mod (11) ,  7^3  ≡ 2 mod (11)  ∴  7^(10k+3)  ≡ 2 mod (11)  ∴ 2009^3^(2016n+2013)   ≡ 2 mod (11) →  {I}  2010 ≡ 8 mod (11) → 2010^(10)  ≡ 8^(10)  mod (11)  By using fermat′s little theorm: we can state the following   8^(10 )  ≡ 1 mod (11) → 8^(10m)  ≡ 1 mod (11)  2010^2^(2016n+2013)   ≡  8^2^(2016n+2013)   mod(11)  2^(2016n+2013)  can be written as 2^(4(504n+503)+1)   ∴The Unit digit of 2^(2016n+2013)  is 2  ∴2^(2016n+2013)  ≡ 2 mod (10) → can bd written as 10m+2   8^(10m)  ≡ 1 mod (11) , 8^2  ≡ 9 mod (11)  ∴ 8^(10m+2)  ≡  9 mod (11)  ∴ 2010^2^(2016n+2013)   ≡ 9 mod (11) → {II}  from I and II we conclude that:    2009^3^(2016n+2013)   + 2010^2^(2016n+2013)   ≡ 0 mod (11)  ∴ x = 0          (That′s it)                                                  [BY  YORK]
20097mod(11)200910710mod(11)11isaprimenumberwecanapplyfermatslittletheorm7101mod(11)710k1mod(11)wherekisaaninteger0200932016n+2013732016n+2013mod(11)32016n+2013canbewrittenas34(504n+503)+1TheUnitdigitwouldbe332016n+20133mod(10)32016n+2013canbewrittenas10k+3710k1mod(11),732mod(11)710k+32mod(11)200932016n+20132mod(11){I}20108mod(11)201010810mod(11)Byusingfermatslittletheorm:wecanstatethefollowing8101mod(11)810m1mod(11)201022016n+2013822016n+2013mod(11)22016n+2013canbewrittenas24(504n+503)+1TheUnitdigitof22016n+2013is222016n+20132mod(10)canbdwrittenas10m+2810m1mod(11),829mod(11)810m+29mod(11)201022016n+20139mod(11){II}fromIandIIweconcludethat:200932016n+2013+201022016n+20130mod(11)x=0(Thatsit)[BYYORK]

Leave a Reply

Your email address will not be published. Required fields are marked *