Menu Close

2018-2019-2019-2018-mod-4-




Question Number 89586 by Asif Hypothesis last updated on 18/Apr/20
  2018^(2019) −2019^(2018 ) ≡? (mod 4)
2018201920192018?(mod4)
Answered by Asif Hypothesis last updated on 18/Apr/20
We observe,        2018 ≡ 2 (mod 4)⇒2018^(2019)  ≡ 2^(2019)  ≡ 0 (mod 4)   (∗)  2019 ≡ 3 (mod 4)⇒2019^(2018) ≡ 3^(2018) ≡(3^2 )^(1009) ≡ (1)^(1009) ≡1(mod 4)  (∗∗)  (∗)+(∗∗) yields  2018^(2019) −2019^(2018)  ≡ 0+1 ≡1 (mod 4)
Weobserve,20182(mod4)20182019220190(mod4)()20193(mod4)2019201832018(32)1009(1)10091(mod4)()()+()yields20182019201920180+11(mod4)

Leave a Reply

Your email address will not be published. Required fields are marked *